Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Similar documents
Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

京都 ATLAS meeting 田代. Friday, June 28, 13

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

October 7, Shinichiro Mori, Associate Professor

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

Hypocenter Distribution of Deep Low-frequency Tremors in Nankai Subduction Zone, Japan

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Seismic Velocity Structure ofthe Crust Beneath the Aira Caldera in Southern Kyushu by Tomography oftravel Times oflocal Earthquake Data

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Yutaka Shikano. Visualizing a Quantum State

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Is the 2006 Yogyakarta Earthquake Related to the Triggering of the Sidoarjo, Indonesia Mud Volcano?

The Inflation-deflation History of Aira Caldera for the Last 120 Years and the Possibility of a Forthcoming Large Eruption at Sakurajima Volcano

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

The cause of the east west contraction of Northeast Japan

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Analysis of shale gas production performance by SGPE

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Taking an advantage of innovations in science and technology to develop MHEWS

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

The unification of gravity and electromagnetism.

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Estimation of Gravel Size Distribution using Contact Time

Product Specification

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

中村洋光 Hiromitsu Nakamura 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention, Japan (NIED) Outline

Long-term earthquake forecast

Parasitic Eruptions on Sakurajima Volcano

XENON SHORT ARC LAMPS キセノンショートアークランプ

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Predictabilities of a Blocking Anticyclone and a Explosive Cyclone

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

Medan Kuala Lumpur Sinabung Singapore Padang Kalimantan Sumatra Indian Ocean 5km Jakarta Bandung Java Sea Surabaya Java Merapi Yogyakarta Fig. 1 Locat

Illustrating SUSY breaking effects on various inflation models

Development of Flood Exposure Map Considering Dynamics of Urban Life. Yuling LIU, Norio OKADA, Dayong SHEN* and Yoshio KAJITANI**

日本政府 ( 文部科学省 ) 奨学金留学生申請書

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae)

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

Method for making high-quality thin sections of native sulfur

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

GRASS 入門 Introduction to GRASS GIS

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

SOLID STATE PHYSICAL CHEMISTRY

2011/12/25

SML-811x/812x/813x Series

Simulations of Atmospheric General Circulations of Earth-like Planets by AFES

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Thermal Safety Software (TSS) series

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

Evaluation of Faults Near the Tsuruga Nuclear Power Plant

高エネルギーニュートリノ : 理論的な理解 の現状

Development of Advanced Simulation Methods for Solid Earth Simulations

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Structure of Northeastern Sakurajima, South Kyushu, Japan, Revealed by Seismic Reflection Survey

Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

観光の視点から見た民泊の現状 課題 展望

Transcription:

Hypocenters, Spectral Analysis and Source Mechanism of Volcanic Earthquakes at Kuchinoerabujima: High-frequency, Low-frequency and Monochromatic Events Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki Sakurajima Volcano Research Center, DPRI, Kyoto University Synopsis In 26, monochromatic events characterized by slowly decaying quasi-sinusoidal coda part increased in August and September, and were followed by the increase of low-frequency (LF) events significantly in October. And then, high-frequency (HF) events increased to 45 events in ovember. Hypocenters of HF events located at the at depth of to km beneath the crater. LF and monochromatic events are also distributed inside the crater rim with to 5 and to km in deep beneath the crater, respectively. HF events have a wide spectra in frequency range of 6~25Hz, meanwhile LF events dominated by lower frequency around 1~5 Hz. Monochromatic events show two patterns of spectra. First ones have a dominant frequency in range of 1~5 Hz and second ones have higher frequency around 6~15 Hz, and some subdominant peaks also appeared on the spectra. Fault plane solutions of HF events are normal fault type with WW-ESE extension. Mechanisms of monochromatic events for high-frequency component are similarly normal fault types. LF and low-frequency monochromatic events show non double-couple mechanisms due to polarities at all stations are dilatation. Keywords: High-frequency events, Low-frequency events, Monochromatic events, Kuchinoerabujima volcano 1. Introduction Kuchinoerabujima volcano is located at Ryukyu Islands, South off Kyushu. The active crater is Shindake crater and the geothermal area is located at the western part of the crater. Historical records of eruption at Kuchinoerabujima started in 1841. Since then, several eruptions occurred in such as in 1931-1934, 1945 and 1966. The eruptions were dominated by phreatic eruptions. Last eruption was occurred at the fissure, east of the summit crater in 198. Sometimes, the seismicity increased such as in March-June 1996, February 24, January 25 and ovember 26. In August-December 1999 the number of volcanic earthquakes increased significantly and from that time to now, the seismicity at Kuchinoerabujima tends to be in the moderate to high level of volcanic activity. To monitor the seismic activity of Kuchinoerabujima volcano, Sakurajima Volcano Research Center (SVRC) has built a seismic network, which is consisting of three broadband seismometers and three short-period seismometer of 1 Hz around the volcano (Figure 1). The data is telemetered to SVRC by telephone lines. To cover the eastern part of the volcano, since the beginning of September 26, two temporary seismic stations have been installed at east and southeast part of the volcano (Figure 2). These seismic Shindake Furudake 3 km - - - oike Furudake crater -1. - - - km SDW Figure 1 Seismic network at Kuchinoerabujima; stars and pentagons indicate permanent and temporary stations, respectively. stations have been equipped with short period (1 Hz) 3 components seismometer. The data has been sampled

with a frequency of 1 Hz for horizontal components and 2 Hz for vertical component by data loggers (DATAMARK LS-7XT) Volcanic earthquakes of Kuchinoerabujima volcano can be classified into (Yamamoto et al., 1997; Iguchi et al., 21): 1. A-type: P and S-waves can be identified clearly and spectra with dominant frequency 8~1 Hz. 2. High-frequency type (HF): S-wave can not be recognized clearly, has spectra with frequency of 6~3 Hz. 3. Low-frequency type (LF): S-wave can not be recognized clearly, dominated by lower frequency around 2~4 Hz and some subdominant frequency peaks appeared. 4. Monochromatic event: showing slowly decaying quasi-sinusoidal coda part, having 2 patterns of spectra i.e. with low dominant frequency and high dominant frequency, also showing several peaks of subdominant frequency. Example of waveform of volcanic earthquakes at Kuchinoerabujima, which are analyzed in this study, can be seen in figure 2. 6.x (m /s) -6.x -1.x HF-type 1.x (m /s) LF-type 3.x (m /s) -3.x x (m /s) Low-frequency Monochromatic-type High-frequency Monochromatic-type -x 15 2 25 3 35 4 45 Figure 2. Waveforms of volcanic earthquakes at Kuchinoerabujima. The seismicity at Kuchinoerabujima is dominated by HF events. Monochromatic event, for the first time was observed in March 1996, following the occurrences of A-type, LF-type and HF-type events in January 1996. During 26, the seismicity at Kuchinoerabujima kept high level. HF events dominated the seismicity (Figure 3). In August and September, number of monochromatic events reached 115 and 75, respectively. After that, the number of LF events increased significantly in October and about 55 events occurred in several days. And then, in ovember HF events reached 45 events. umber of earthq. HF 2 1 6 LF 4 2 12 1 8 6 4 2 Low-frequency monochromatic High-frequency monochromatic Jan Feb Mar Apr May Jun Jul Aug Sep Oct ov Dec 26 Figure 3. Monthly number of volcanic earthquakes at Kuchinoerabujima volcano in 26. Yamamoto et al. (1997) observed the monochromatic events, which were recorded in May- June 1996. They analyzed that the monochromatic events might not be generated by shear faulting mechanism, because polarities of P-wave first motions were dilatational at all the stations. This pattern was similar to LF events. The other study was done by Iguchi et al. (21) suggested that repetition of HF events, which were generated by normal fault mechanism, was a trigger of monochromatic events that occurred in ovember 2 to March 21. In this study, hypocenter and source mechanism of HF, LF and monochromatic events recorded in 26 will be analyzed and the results will be compared to the previous studies (Yamamoto et al., 1997; Iguchi et al., 21). 2. Analysis 2.1. Hypocenter Hypocenter is calculated by using WI software. For the input is used P-wave arrival time, a reference point, coordinate of seismic stations and assuming a homogeneous half space of V p is 2.1 km/s (Yamamoto et al., 1997 and Iguchi et al., 21). In the calculation only t p is used, due to t s -t p is too small s. Figure 4 shows hypocenter calculation using 4 permanent stations and data from January - August and October ovember 26. Hypocenters of HF events are located at the crater with the depth of to km below the crater (Figure 4a). LF events are located at the crater with the depth of focus between 5 km below the crater (Figure 4b) and monochromatic events (Figure 4c) is located at depth of - km below the crater. Those three types of volcanic earthquakes are located at the same region. These results reveal that hypocenters of volcanic earthquakes in 26 are

shallower than the previous studies which were done by Yamamoto et al. (1997) and Iguchi et al. (21). Figure 5 shows hypocenter calculation using 4 stations and 6 stations (including 2 temporary stations). Recorded data in September and December are used in the calculation. Comparing both results show that the hypocenters are distributed at the crater with depth of hypocenter calculation for 6 stations deeper up to 8 km than calculation for 4 stations. (c) - - SDW SDW - - - - - - - km - - - km - - SDW - - - - km Depth (km Depth (km) Depth (km) - 1. - 1. - 1. - - - - - - - - - - - - - - - Figure 4. Hypocenter distribution of HF events, LF events and (c) Monochromatic events, grey and open circles indicate low-frequency and high-frequency monochromatic events, respectively. 2.2. Spectra Analysis Spectral analysis is done by applying FFT algorithm on 14 s waveform start from the onset of HF type-, LF-type and monochromatic events. HF events show wide spectra with a dominant frequency around 6~25 Hz. Example of HF event can be seen in figure 6. Spectra of LF events have dominant frequency in range of 1~5 Hz. In figure 7, the dominant peak is about of 1.7 Hz. Monochromatic events show 2 patterns of spectra, first pattern having a peak dominated by low frequency around 1~5 Hz, and the second pattern has dominant frequency in range of 6~15 Hz. On spectra of monochromatic events, several peaks of subdominant frequency can be identified. Figure 8a shows spectra of monochromatic event that have dominant frequency at 3.6 Hz, and subdominant peaks at 1.4, 6.7 and higher than 1 Hz. Figure 8b shows the dominant frequency at 13.3 Hz and subdominant peaks at 6.3, 12 and 16.4 Hz. - - SDW - - - - km Depth (km) - 1. - - - - - Figure 5. Hypocenter distribution using 4 stations (open circles) and 6 stations (solid circles).

(UD) 1. x m/s 1-2 (UD) 1-2 SDW(UD) SDW(UD) 2. x m/s 1. x m/s 1-2 1-2 (UD) (UD) 1. x m/s Amplitude 16 18 2 22 24 26 28 3 Time(s) Figure 6. Waveform and spectra of HF event, recorded at 16:35:21, February 27 (UD) 1. x m/s 1-2 (UD) 1-2 SDW(UD) SDW(UD) 1. x m/s 1. x m/s (UD) 1-2 (UD) 1. x m/s Amplitude 16 18 2 22 24 26 28 3 32 1-6 Figure 7. Waveform and spectra of LF event, recorded at 15:2:23, October 9. (UD) 2. x m/s 1.4x1-2 S D W W -U D SDW(UD) 4. x m/s 9.x SDW -UD 4. x m/s 9.x -UD (UD) 2. x m/s 4.x -UD 18 2 22 24 26 28 3 32 34 36 38 2 4 6 8 1 12 14 16 18 2 (UD) 2. x m/s 6.x SDW W -UD SDW(UD) 2. x m/s 7.x SDW -UD 2. x m/s 5.x -UD (UD) 2. x m/s 4.x -UD 16 18 2 22 24 26 28 3 32 34 36 38 4 42 2 4 6 8 1 1 2 1 4 1 6 1 8 2 2 2 2 4 Figure 8. Waveform and spectra of monochromatic events, recorded at 2:47:5, February 24 and at 3:48:22, June 11.

2.3. Source Mechanism In this section, fault plane solution will be obtained by assuming double-couple (DC) mechanism due to polarity of dilatational and compressional of P-wave first motions are mixed. Fault plane solutions of HF events are dominated by normal fault types with T-axis toward to WW-ESE direction and P-axis nearly vertical (Figure 9). These results are similar to a previous study done by Iguchi et al. (21). HF events occurred in ovember 2 March 21 were also generated by normal fault type with east-west extension. Due to only 4-6 stations used in this study, focal mechanism of HF events during period 26 is compared to the HF events recorded during the research of subsurface seismic structure of Kuchinoerabujima volcano in ovember 24. In the 24`s research, 79 temporary stations were deployed on Kuchinoerabujima Island. Polarity distribution of P-wave first motion which can be identified is shown in figure 1. Those HF events in ovember 24 were generated by normal fault type with T-axis tend to WW-ESE direction and P-axis nearly vertical. In figure 1, two HF events recorded in ovember 11, 24 were located at southern part of the crater with a depth about of.11-.14 km below sea level deeper than HF events which occurred in 26. In the hypocenter and focal mechanism determination, velocity structure resulting from active seismic survey at Kuchinoerabujima (Yamamoto et al., 25) was used. Figure 9. Focal mechanism of HF event in period year 26 using 4 stations (above) and 6 stations (below) oike 2 km Shindake Furudake Figure 1. Location of seismic stations (solid square) and hypocenters (solid stars). Focal mechanisms of two HF events on ovember 11, 24, plotted on the upper hemisphere of focal sphere. Solid and open circles indicate compressional and dilatational components, respectively.

Since all polarities of LF events are dilatational components, the fault plane solution could not be obtained (Figure 11). The other method, such as moment tensor analysis could be used to determine the mechanism of LF events. Monochromatic events at Kuchinoerabujima reveal some mechanisms. Solution for monochromatic events, which have low frequency component, could not be determined since all of the polarities are dilatational components and those are similar to LF events mechanisms (Figure 12a and b). These results are similar to the previous study which was done by Yamamoto et al. (1997) that showed both LF and lowfrequency monochromatic events may not be generated by double-couple mechanisms due to all the polarities are dilatation at all the stations. These results are similar to study by Yamamoto et al. (1997) that inferred LF and low-frequency monochromatic events may not be generated by double-couple mechanisms. Otherwise, fault plane solutions for the monochromatic events that have high-frequency component could be obtained. The solutions of such events are similar to HF event mechanisms that can be seen in figure 12c and d. Those high-frequency monochromatic events are generated by normal fault type mechanism with T-axes tend to WW-ESE direction and P axes nearly vertical. Iguchi et al. (21) suggested the initial part of monochromatic events which have high-frequency component were reflected by repetition of high-frequency events which were generated by normal fault mechanism. Figure 11. Composite polarities of 12 LF events for 4 stations and Polarities of LF events for 6 stations, recorded at 18:1:4 on December 25. (c) (d) Figure 12. Polarities and composite of low-frequency monochromatic events for 4 stations Polarities of lowfrequency monochromatic events for 6 stations. (c) Focal mechanism and (d) Composite of high-frequency monochromatic events for 4 and 6 stations. Acknowledgements We are grateful to Dr Keigo Yamamoto for the useful discussion. We thank to Dr. Wataru Kanda for a help in installing the seismic stations at Kuchinoerabujima volcano.

References Iguchi, M., Yamamoto, K., Takayama, T., Maekawa, T., ishimura, T., Hashino, H., Yakiwara, H., and Hirano, S., 21. Characteristic of volcanic earthquakes at Kuchierabujima volcano, Geophysical and Geochemical Joint Observation 2. Ann. Dist. Prev. Res. Inst., Kyoto Univ. Japan, 44 B-1, 317-326 (in Japanese, abstract in English). Yamamoto, K., Iguchi, M., Takayama, T., and Ishihara, K., 1997. Increase in seismic activity in 1996 at Kuchierabujima volcano. Ann. Dist. Prev. Res. Inst., Kyoto Univ. Japan, 4 B, 39-47 (in Japanese, abstract in English). Yamamoto, K., Iguchi, M., Hashimoto, T., Tsutsui, T., Tanaka, S., Aoki, Y., Onizawa, S., Watanabe, T., Shimizu, H., Ohkura, T., Miyamachi, H., Yakiwara, H., and Hiramatsu, H., 25. Analysis of seismic velocity structure using the data of 24 Kuchierabujima volcano active seismic survey. Joint Meeting for Japan Earth and Planetary Science, V55-P28 (Poster). 口永良部島火山における火山性地震の震源分布, スペクトルおよび震源メカニズムについて 高周波地震, 低周波地震, モノクロマティック地震 ヘッティトゥリアストゥティ 井口正人為栗健 山崎友也 京都大学防災研究所火山活動研究センター 要旨 口永良部島火山では 26 年 8 月ごろからモノクロマティック地震と呼ばれる正弦波的な振動からなる長いコーダ部分をもつ地震が頻繁に現われるようになった. この活動は 9 月ごろまで続いた, 引き続き 1 月には低周波地震が発生するようになった. 更に 11 月には高周波地震が頻発し,45 回を記録した. 京都大学防災研究所では新岳周辺の常設の 4 観測点加え, 臨時観測点を火口の東側に増設することにより, 周辺の震源位置, スペクトル, 震源メカニズムを調べたところ次の知見が得られた.(1) これら 3 種類の地震の震央はいずれも新岳の火口内にあり, 深さは m 以下と浅い. 特に, 低周波地震の震源の深さは 2m 以下と極めて浅い場所に求まった.(2) 高周波地震は 6-25Hz の高周波側の広い周波数帯域を示す. 一方, 低周波地震のスペクトルでは 1-5Hz の間に卓越したピークがみられ, 副次的なピークも検出できた. モノクロマティック地震では 3 個以上のピークが見られる. ピークの周波数範囲から 2 種類に分類できる. 低周波型モノクロマティック地震ではピーク周波数は 1-5Hz の範囲にあるが, 高周波型モノクロマティック地震では 6-15Hz の高周波側にピークがみられる.(3) 高周波地震および高周波型モノクロマティック地震では初動は押しであるものと引きであるものが混在するため, 4 象限型の押し引き分布をもつダブルカップルのメカニズムを仮定するのが妥当である. これらのタイプではすべて西北西 - 東南東に伸張軸をもつ正断層型のメカニズムが得られた. 一方, 低周波地震および低周波型モノクロマティック地震では初動がすべて引きであり,4 象限型の節線を引くことが困難である. 収縮震源によって励起されていると考えられる.