Due for this week. Slide 2. Copyright 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Similar documents
Due for this week. Slide 2. Copyright 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Graphical Solutions of Linear Systems

Due for this week. Slide 2. Copyright 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Final Exam logistics. Here is what I've found out about the final exam in MyMathLab (running from a week ago to 11:59pm five days after class tonight.

Math 2 Variable Manipulation Part 6 System of Equations

8 Systems of Linear Equations

Name: Systems 2.1. Ready Topic: Determine if given value is a solution and solve systems of equations

Systems of Equations and Inequalities. College Algebra

Consistent and Dependent

October 5 th October 9 th. Unit 2: Equations & Inequalities

Algebra I. Systems of Linear Equations and Inequalities. Slide 1 / 179. Slide 2 / 179. Slide 3 / 179. Table of Contents

Algebra. Chapter 6: Systems of Equations and Inequalities. Name: Teacher: Pd:

Equations can be classified according to the types of operations and quantities involved. Important types include:

Systems of Equations and Inequalities

6-4 Solving Special Systems

1. What are the various types of information you can be given to graph a line? 2. What is slope? How is it determined?

Chapter 1 Analytic Geometry

Lesson 12: Systems of Linear Equations

Put the following equations to slope-intercept form then use 2 points to graph

Topic 1. Solving Equations and Inequalities 1. Solve the following equation

Foundations of Math. Chapter 3 Packet. Table of Contents

5.2 Start Thinking Sample answer: x the cost of an incandescent light bulb, y the cost of a CFL, 30x 2 3 3, t 25; t 6F

Math 3 Variable Manipulation Part 1 Algebraic Systems

Chapter 4. Systems of Linear Equations; Matrices

Algebra 2/Trigonometry Summer Review Packet

6-4 Solving Special Systems

Chapter 4. Systems of Linear Equations; Matrices. Opening Example. Section 1 Review: Systems of Linear Equations in Two Variables

Algebra I. Systems of Linear Equations and Inequalities. 8th Grade Review. Slide 1 / 179 Slide 2 / 179. Slide 4 / 179. Slide 3 / 179.

Algebra 2 Summer Review Packet

Final Exam Study Guide

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables

Chapter 9 Solving Systems of Linear Equations Algebraically

Name Period Date Ch. 5 Systems of Linear Equations Review Guide

Solving Systems of Linear Equations by Substitution

Graphing Systems of Linear Equations

OTHER METHODS FOR SOLVING SYSTEMS

28 (Late Start) 7.2a Substitution. 7.1b Graphing with technology Feb 2. 4 (Late Start) Applications/ Choosing a method

Keystone Exam Concept Review. Properties and Order of Operations. Linear Equations and Inequalities Solve the equations. 1)

Algebra I Chapter 6 Practice Test

Create your own system of equations: 1. Prove (2, 5) is a solution for the following system: 2. Is (-2, 0) a solution for the following system?

How can you use linear functions of two independent variables to represent problem situations?

Solve. Label any contradictions or identities. 1) -4x + 2(3x - 3) = 5-9x. 2) 7x - (3x - 1) = 2. 3) 2x 5 - x 3 = 2 4) 15. 5) -4.2q =

MATH 110: FINAL EXAM REVIEW

PRACTICE FINAL , FALL What will NOT be on the final

A) y = -5x + 3 B) y = 5x 3 C) y = -5x 3 D) y = 5x + 3

Unit Test Linear equations and Inequalities

Elementary Algebra Review for Exam 4

Additional Exercises 5.1 Form I

15) x3/2 = ) (5x + 3)1/3 = 3. 17) (x2 + 14x + 49) 3/4-20 = 7. 18) x4-7x = 0. 19) x2/5 - x1/5-12 = 0. 21) e2x + ex - 6 = 0

Chapter 1-2 Add and Subtract Integers

Math 10 - Unit 8 REVIEW WORKSHEET - Systems of Linear Equations

Chapter 7 Quadratic Equations

6.2. TWO-VARIABLE LINEAR SYSTEMS

AdvAlg5.3SolvingSystemsBySubstitution.notebook February 26, 2018

Unit 6 Systems of Equations

Unit 1: Equations & Inequalities in One Variable

Lesson 17 Section 3.1 System of Equations (in 2 variables)

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE

Unit 7 Systems and Linear Programming

ACE Transfer Credit Packet Your Guide to Earning ACE Credit for StraighterLine Courses

Algebra 1 Fall Semester Final Review Name

September 23, Chp 3.notebook. 3Linear Systems. and Matrices. 3.1 Solve Linear Systems by Graphing

( ) ( 4) ( ) ( ) Final Exam: Lessons 1 11 Final Exam solutions ( )

7.1 Solving Linear Systems by Graphing

MATH 115 SPRING 2019 REVIEW SHEET TEST 2 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

For problems 1 4, evaluate each expression, if possible. Write answers as integers or simplified fractions

Algebra I System of Linear Equations

Foundations of Algebra. Learning Goal 3.1 Algebraic Expressions. a. Identify the: Variables: Coefficients:

a) b) 1 c) 19 d) e) none of these 2.) 80 0 a) undefined b) 1 c) 80 d) 0 e) none of these Evaluate the expression 3.) a) b) c) d) e) none of these

Unit 12: Systems of Equations

To determine the slope or rate of change of a linear function, use m =, positive slopes, rises from left to right, negative

3.1 NOTES Solving Systems of Linear Equations Graphically

ALGEBRA 1 UNIT 3 WORKBOOK CHAPTER 6

Name Algebra 1 Midterm Review Period. = 10 4x e) x ) Solve for y: a) 6x 3y = 12 b) 4y 8x = 16

MATH 1710 College Algebra Final Exam Review

Name. 1. Given the solution (3, y), what is the value of y if x + y = 6? 7. The graph of y = x 2 is shown below. A. 3 B. 4 C. 5 D.

Honors Algebra 1 - Fall Final Review

Lesson 28: Another Computational Method of Solving a Linear System

BOROUGH OF MANHATTAN COMMUNITY COLLEGE DEPARTMENT OF MATHEMATICS MAT 051 Midterm Examination Review

Unit 5 SIMULTANEOUS LINEAR EQUATIONS

Chapter 6: Systems of Linear Equations and Inequalities

The Method of Substitution. Linear and Nonlinear Systems of Equations. The Method of Substitution. The Method of Substitution. Example 2.

UNIT 2: REASONING WITH LINEAR EQUATIONS AND INEQUALITIES. Solving Equations and Inequalities in One Variable

Day 28 linear functions Day 29 linear functions. integers Day 30 non-linear functions Day 31 non-linear functions. Multiply and divide integers Day

Core Connections Algebra 2 Checkpoint Materials

Archdiocese of Washington Catholic Schools Academic Standards Mathematics

Chapter 4: Systems of Equations and Inequalities

The ACCUPLACER (Elementary Algebra) is a 12 question placement exam. Its purpose is to make sure you are put in the appropriate math course.

3.1 Solving Linear Systems by Graphing 1. Graph and solve systems of linear equations in two variables. Solution of a system of linear equations

Systems of Linear Equations and Inequalities

REVIEW SHEETS ELEMENTARY ALGEBRA MATH 65

Unit 4 Systems of Equations Systems of Two Linear Equations in Two Variables

Math Review for Incoming Geometry Honors Students

For the given equation, first find the x-intercept by setting y = 0: Next, find the y-intercept by setting x = 0:

Complete Unit 6 Package

State whether the following statements are true or false: 27.

Intermediate Algebra 100A Final Exam Review Fall 2007

Name Class Date. What is the solution to the system? Solve by graphing. Check. x + y = 4. You have a second point (4, 0), which is the x-intercept.

Chapter 4 Systems of Linear Equations and Inequalities

Transcription:

MTH 209 Week 1

Due for this week Homework 1 (on MyMathLab via the Materials Link) Monday night at 6pm. Read Chapter 6.1-6.4, 7.1-7.4,10.1-10.3,10.6 Do the MyMathLab Self-Check for week 1. Learning team planning for week 5. Discuss your final week topic for your team presentaions Slide 2

4.1 Solving Systems of Linear Equations Graphically and Numerically Basic Concepts s to Systems of Equations

Solving two equations at the same time This just means we want to know what point (or points) they share in common in the universe. So we can just graph them and see where they cross Slide 4

Solving an equation graphically Use a graph to find the x-value when y = 4. a. y = 3x 2 b. 2x + 2y = 18 a. Graph the equations y = 3x 2 and y = 4. y = 4 5 4 3 2 1-5 -4-3 -2-1 0 1 2 3 4 5-1 -2-3 -4-5 Y (2, 4) The graphs intersect at the point (2, 4) so therefore an x-value of X 2 corresponds to a y-value of 4. y = 3x 2 Slide 5

continued b. Graph the equations 2x + 2y = 18 and y = 4. 10 9 8 7 6 5 4 3 2 1 0 Write the equation in slope-intercept form. Y y = 4 y = x + 9 (5,4) 1 2 3 4 5 6 7 8 9 10 2x + 2y = 18 2y = 2x + 18 X y = x + 9 The graphs intersect at the point (5, 4) so therefore an x-value of 5 corresponds to a y-value of 4. Try some Q s: 9-16 Slide 6

Testing for solutions Determine whether (0, 4) or ( 2, 3) is a solution to x 2y 8 2x 2y 10. For (0, 4) to be a solution, the values of x and y must satisfy both equations. 0 2( 4) 8 True 2( 0) 2( 4 ) 10 False Because (0, 4) does not satisfy both equations, (0, 4) is NOT a solution. Slide 7

continued Determine whether (0, 4) or ( 2, 3) is a solution to x 2y 8 2x 2y 10. Test: ( 2, 3) ( 2) 2( 3) 8 True 2( 2) 2( 3) 10 True Both equations are true, so ( 2, 3) is a solution. Try some Q s: 17-22 Slide 8

Solving a system graphically Solve the system of equations graphically. x 2y 8 Solve each equation for y then graph. x 2y 8 2y x 8 1 y 2 x 4 2x y 1 The graphs intersect at the point (2, 3). y 2x 1 y 2x 1 2x y 1 Try some Q s: 35-40 Slide 9

Animal shelter There are 40 animals in a local animal shelter that rescues dogs and cats. There are 10 more dogs than cats. How many of each animal are there? Step 1: Identify each variable. x: dogs in the shelter y: cats in the shelter Step 2: Write a system of equations. The total number of animals in the shelter is 40, so we know x + y = 40. Because there are 10 more dogs than cats, we also know that x y = 10. x + y = 40 x y = 10 Slide 10

continued Step 3a: Solve the system of equations. Write the equations in slope-intercept form and graph. y = x + 40 y = x 10 Step 3b: Determine the solutions to the problem. The point (25, 15) corresponds to x = 25 and y = 15. Thus, there are 25 dogs and 15 cats. 50 45 40 35 30 25 20 15 10 5 0 Y y = x + 40 y = x 10 (25,15) X 5 10 15 20 25 30 35 40 45 50 Step 4: Check your solution. Note that 25 + 15 = 40 and that 25 15 = 10. Try some Q s: 61 Slide 11

Solving an equation graphically The equation P = 16x calculates an employee s pay for working x hours at $16 per hour. Use the intersection-of-graphs method to find the number of hours that the employee worked if the amount paid is $128. 150 135 120 105 90 75 60 45 30 15 0 Y P = 128 P = 16x 1 2 3 4 5 6 7 8 9 10 Time (hours) (8,128) X The graphs intersect at the point (8, 128), which indicates that the employee must work 8 hours to earn $128. Try some Q s: 59-60 Slide 12

Section 4.1 practice Solving an equation graphically Testing for solutions Solving a system graphically Solving an equation graphically Try some Q s: 9-16 Try some Q s: 17-22 Try some Q s: 35-40 Try some Q s: 59-60 Slide 13

4.2 Solving Systems of Linear Equations by Substitution The Method of Substitution Types of Systems of Linear Equations Applications

The technique of substituting an expression for a variable and solving the resulting equation is called the method of substitution. Slide 15

Using the method of substitution Solve each system of equations. a. y 3x b. 3x y 5 c. x y 28 3x y 7 a. The first equation is solved for y, so we substitute 3x for y in the second equation. y 3x x 3x 28 x y 28 4x 28 x 7 Substitute x = 7 into y = 3x and it gives y = 21. The solution is (7, 21). 2x 3y 6 3x 6y 12 Slide 16

continued Solve each system of equations. a. y 3x b. 3x y 5 c. 2x 3y 6 x y 28 3x y 7 3x 6y 12 b. Solve the first equation for y. 3x y 7 3 x ( 3x 5) 7 3x 3x 5 7 6x 12 x 2 Substitute x = 2 into 3x + y = 5. 3x y 5 y 3x 5 3( 2) y 5 6 y 5 y 1 The solution is ( 2, 1). Slide 17

continued Solve each system of equations. a. y 3x b. 3x y 5 c. 2x 3y 6 x y 28 3x y 7 3x 6y 12 c. Solve for x in the second equation. 2x 3y 6 3x 6y 12 3x 6y 12 x 2y 4 2 2y 4 3y 6 Substitute y = 2 into x = 2y + 4 x = 0 4y 8 3y 6 y 8 6 y 2 The solution is (0, 2). y 2 Try some Q s: 11-38 Slide 18

Slide 19

Identifying types of equations Graphs of two equations are shown. State the number of solutions to each system of equations. Then state whether the system is consistent or inconsistent If it is consistent, state whether the equations are dependent or independent. a. There is only one line, which indicates that the graphs are identical, or coincide, so there are infinitely many solutions. The system is consistent and the equations are dependent. Slide 20

continued b. The lines are parallel, so there are no solutions. The system is inconsistent. c. The lines intersect at one point, so there is one solution. The system is consistent, and the equations are independent. Try some Q s: 39-44 Slide 21

Determining purchases Suppose that two groups of students go to a basketball game. The first group buys 4 tickets and 2 bags of popcorn for $14, and the second group buys 5 tickets and 5 bags of popcorn for $25. Find the price of a ticket and the price of a bag of popcorn. Step 1: Identify each variable. x: cost of a ticket y: cost of a bag of popcorn Step 2: Write a system of equations. The first group purchases 4 tickets and 2 bags of popcorn for $14. The second group purchases 5 tickets and 5 bags of popcorn for $25. 4x + 2y = 14 5x + 5y = 25 Slide 22

continued Step 3A: Solve the system of linear equations. 4x + 2y = 14 5x + 5y = 25 Solve the first one for y. 4x + 2y = 14 2y = 4x + 14 y = 2x + 7 Substitute for y in the second equation. 5x + 5y = 25 5x + 5( 2x + 7) = 25 5x + ( 10x) + 35 = 25 5x = 10 x = 2 Slide 23

continued Step 3A: Solve the system of linear equations. Because y = 2x + 7 y = 2(2) + 7 y = 3 Step 3B: Determine the solution to the problem. The tickets cost $2 each and a bag of popcorn costs $3. Step 4: Check the solution. The first group purchases 4 at $2 each and 2 bags of popcorn at $3 each which is equal to $14. The second group purchases 5 tickets at $2 each and 5 bags of popcorn for $3 each and this does total $25. The answers check. Try some Q s: 87 Slide 24

Section 4.2 practice Using the method of substitution Identifying types of equations Determining purchases Try some Q s: 11-38 Try some Q s: 39-44 Try some Q s: 87 Slide 25

4.3 Solving Systems of Linear Equations by Elimination The Elimination Method Recognizing Other Types of Systems Applications

Applying the elimination method Solve each system of equations. a. x y 1 b. 3x 4y 10 x y 5 3x 5y 26 a. If we add the two equations y will be eliminated. x x y 1 y 5 2x 0y 6 2x 6 x 3 Substitute x = 3 into either equation. x y 1 3 y 1 y 2 The solution is (3, 2). Slide 27

continued Solve each system of equations. a. x y 1 b. 3x 4y 10 x y 5 3x 5y 26 b. If we multiply the first equation by 1 and then add, the x-variable will be eliminated. 3x 4y 10 3x 4y 10 3x 4y 10 3x 4( 4) 10 3x 5y 26 3x 5y 26 3x 16 10 9y 36 y 4 3x 6 x 2 Substitute y = 4 into either equation. Try some Q s: 17-26 The solution is ( 2, 4). Slide 28

Multiplying before applying elimination Solve the system of equations. 1 x y 1 4 4x 3y 20 Multiply the first equation by 4. 1 x y 1 4 1 4 x y 4( 1) 4 4x y 4 Try some Q s: 29-38 4x y 4 4x 3y 20 Substitute y = 6 into either equation. 4x 3y 20 4y 24 y 6 4x 3( 6) 20 4x 18 20 4x 2 1 x 2 The solution is (1/2, 6). Slide 29

Recognizing dependent equations Use elimination to solve the following system. 2x 3y 7 6x 9y 21 Multiply the first equation by 3 and then add. 6x 9y 21 6x 9y 21 0 0 The statement 0 = 0 is always true, which indicates that the system has infinitely many solutions. The graphs of these equations are identical lines, and every point on this line represents a solution. Try some Q s: none Slide 30

Recognizing an inconsistent system Use elimination to solve the following system. 4x 2y 14 2x y 9 Multiply the second equation by 2 and then add. 4x 2y 14 4x 2y 18 0 32 The statement 0 = 32 is always false, which tells us that the system has no solutions. These two lines are parallel and they do not intersect. Try some Q s: none Slide 31

Determine rate A cruise boat travels 72 miles downstream in 4 hours and returns upstream in 6 hours. Find the rate of the stream. Step 1: Identify each variable. Let x = the speed of the boat Let y = the speed of the stream Step 2: Write the system of linear equations. The boat travels 72 miles downstream in 4 hours. 72/4 = 18 miles per hour. x + y = 18 The boat travels 72 miles in 6 hours upstream. 72/6 = 12 miles per hour. x y = 12 Slide 32

Application--continued Step 3a: Solve the system of linear equations. x y 18 x y 18 x y 12 15 y 18 2x 30 y 3 x 15 Step 3b: Determine the solution to the problem. The rate of the stream is 3 mph. Step 4: Check your answer. 15 3 18 72/4 = 18 miles per hour 15 3 12 72/6 = 12 miles per hour Try some Q s: 59 The answer checks. Slide 33

Section 4.3 practice Applying the elimination method Determine rate Try some Q s: 59 Try some Q s: 17-26 Slide 34

4.4 Systems of Linear Inequalities Basic Concepts s to One Inequality s to Systems of Inequalities Applications

When the equals sign is replaced with <,, >, or, a linear inequality in two variables results. Examples of linear inequalities in two variables include x > 4 y 2x 3 1 6 2 x y Slide 36

Writing a linear inequality Write a linear inequality that describes each shaded region. a. 5 4 3 2 1-5 -4-3 -2-1 0 1 2 3 4 5-1 -2-3 -4-5 Y X a. The shaded region is bounded by the line y = 3. The solid line indicates that the line is included in the solution set. Only the y-coordinates greater than 3 are shaded. Thus every point in the shaded region satisfies y 3. Slide 37

continued b. Y 5 4 3 2 1-5 -4-3 -2-1 0-1 1 2 3 4 5-2 -3-4 -5 X b. The solution set includes all points that are on or below the line y = x. An inequality that describes this region is y x, which can also be written x + y 0. Try some Q s: 23-30 Slide 38

Graphing a linear inequality Shade the solution set for each inequality. a. x 3 b. y 3x 2 c. x 3y 6 a. Begin by graphing a vertical line x = 3 with a dashed line because the equality is not included. The solution set includes all points with x-values greater than 3, so shade the region to the right of the line. Slide 39

continued Shade the solution set for each inequality. a. x 3 b. y 3x 2 c. x 3y 6 b. Begin by graphing the line y = 3x 2 with a solid line because the equality is included. Check a test point. Try (0, 0) 0 3(0) 2 0 2 False (shade the side NOT containing (0, 0)). Slide 40

continued Shade the solution set for each inequality. a. x 3 b. y 3x 2 c. x 3y 6 c. Begin by graphing the line. Use intercepts or slopeintercept form. The line is dashed. Check a test point. Try (0, 0) 0 3(0) < 6 0 0 < 6 0 < 6 True (shade the side containing (0, 0)). Try some Q s: 31-42 Slide 41

Slide 42

Graphing a system of linear inequalities Shade the solution set to the system of inequalities. x 1 Graph the solution set to each inequality. Shade each region. Where the regions overlap is the solution set. y 3 Try some Q s: 53-58 Slide 43

Graphing a system of linear inequalities Shade the solution set to the system of inequalities. 3x y 4 x 2y 8 Graph each line < is dashed and is solid. Shade each region. Where the regions overlap is the solution set. Try some Q s: 59-70 Slide 44

Animal kennel A kennel owner wants to fence a rectangular pen for dogs. The length of the kennel should be at least 50 feet, and the distance around it should be no more that 140 feet. What are the possible dimensions of the kennel? Let x = the width of the kennel and y = the length of the kennel. y 50 2x 2y 140 The solution set is the shaded area. Try some Q s: 71 Slide 45

Section 4.4 practice Writing a linear inequality Graphing a linear inequality Graphing a system of linear inequalities Graphing a system of linear inequalities Animal kennel Try some Q s: 23-30 Try some Q s: 31-42 Try some Q s: 53-58 Try some Q s: 59-70 Try some Q s: 71 Slide 46

9.1 Systems of Linear Equations in Three Variables Basic Concepts Solving Linear Systems with Substitution and Elimination Modeling Data Systems of Equations with No s Systems of Equations with Infinitely Many s

When solving a linear system in two variables, we can express a solution as an ordered pair (x, y). When solving linear systems in three variables, we often use the variables x, y, and z. A solution is expressed as an ordered triple (x, y, z). Slide 48

Checking for solutions to a system of three equations Determine whether ( 6, 2, 5) is a solution to the system. x + 4y 3z = 13 2y + z = 4 6z = 30 6 + 4(2) 3(5) = 13 2(2) + 5 = 4 6(5) = 30 True False True The ordered triple ( 6, 2, 5) does not satisfy all three equations, so it is not a solution. Try some Q s: 9-12 Slide 49

Setting a up a system of equations The measure of the largest angle in a triangle is 30 greater than the sum of the two smaller angles and 80 more than the smallest angle. Set up a system of three linear equations in three variables whose solution gives the measure of each angle. Let x, y, and z be the measures of the three angles from largest to smallest. Because the sum of the measures of the angles in a triangle equals 180, we have x + y + z = 180. Slide 50

continued The measure of the largest angle x is 30 greater than the sum of the measures of the two smaller angles y + z, so x (y + z) = 30 or x y z = 30. The measure of the largest angle x is 80 more than the measure of the smallest angle z, so x z = 80. Thus, x + y + z = 180 x y z = 30 x z = 80 Try some Q s: 49a Slide 51

Using substitution to solve a linear system of equations Solve the following system. The last equation gives us the value of z immediately. We can substitute z = 5 in the second equation. 4y z = 7 4y 5 = 7 4y = 12 y = 3 2x 5y + z = 6 4y z = 7 z = 5 Slide 52

continued Knowing the values of y and z, allows us to find x by using the first equation. 2x 5y + z = 6 2x 5(3) + 5 = 6 2x 10 = 6 2x = 4 x = 2 Thus x = 2, y = 3, and z = 5 and the solution is (2, 3, 5). Try some Q s: 13-18 Slide 53

SOLVING A LINEAR SYSTEM IN THREE f xvariables a x, a 0 and a 1, Step 1: Eliminate one variable, such as x, from two of the equations. Step 2: Use the two resulting equations in two variables to eliminate one of the variables, such as y. Solve for the remaining variable, z. Step 3: Substitute z in one of the two equations from Step 2. Solve for the unknown variable y. Step 4: Substitute values for y and z in one of the equations given equations and find x. The solution is (x, y, z). Slide 54

Solving a linear system in three variables Solve the following system. Step 1: Eliminate the variable x. 3x y z = 12 3x 2y 4z = 15 3y 5z = 3 3x + 6y + 9z = 9 3x + y + z = 12 7y + 10z = 3 x 2y 3z = 3 3x + y + z = 12 3x 2y 4z = 15 Second equation times 1 Third equation Add. First equation times -3 Second equation Slide 55

continued Step 2: Take the resulting equations from Step 1 to find the value of z. Step 3: 3y 5z = 3 Multiply by 7. 7y + 10z = 3 Multiply by 3. Substitute z to solve for y. 3y 5z = 3 3y 5( 6) = 3 3y + 30 = 3 3y = 27 y = 9 21y 35z = 21 21y + 30z = 9 5z = 30 z = 6 Slide 56

continued Step 4: Substitute values for y and z in one of the given equations and find x. x 2y 3z = 3 x 2(9) 3( 6) = 3 x 18 + 18 = 3 x = 3 The ordered triple is (3, 9, 6). Try some Q s: 19-30 Slide 57

Finding the number of tickets sold One hundred and twenty people attended a basketball event. The total amount collected was $1515. The prices of the tickets were $15 for adults, $12 for children, and $10 for seniors. There are 20 less senior tickets than adult. Find the number of each type of ticket sold. Let x be the number of adult tickets, y be the number of child tickets and z be the number of senior tickets. The three equations are x + y + z = 120 15x + 12y + 10z = 1515 x z = 20 Slide 58

continued Step 1: Eliminate the variable y. Step 2: 12x 12y 12z = 1440 15x + 12y + 10z = 1515 3x 2z = 75 3x 2z = 75 3x + 3z = 60 z = 15 First equation times 12 Second equation Third equation times -3 Step 3: x z = 20 x 15 = 20 x = 35 Slide 59

continued Step 4: Substitute values for x and z in one of the given equations and find y. x + y + z = 120 35 + y + 15 = 120 y = 70 Thus, x = 35, y = 70, z = 15. There were 35 adult tickets, 70 children tickets and 15 senior tickets sold to the basketball event. Try some Q s: 47 Slide 60

Recognizing an inconsistent system Solve the system, if possible. Step 1: Eliminate the variable x. x + y + z = 9 x + y + z = 6 2y + 2z = 15 First equation x + y + z = 9 x + y + z = 6 y + z = 4 Second equation Add. Step 2: Multiply the third equation by 2. 2y + 2z = 15 This is a contradiction, there are no 2y 2z = 8 solutions of the system. 0 = 7 Try some Q s: 31-32,41-42 Slide 61

Solving a system with infinitely many solutions Solve the system. Step 1: Eliminate the variable y. x + y + z = 6 x y + z = 2 2x + 2z = 8 x + y + z = 6 x y + z = 2 3x y + 3z = 10 x + y + z = 6 3x y + 3z = 10 4x + 4z = 16 Step 2: 4x 4z = 16 4x + 4z = 16 0 = 0 (2x + 2z = 8) times 2 We arrive at an identity. Slide 62

continued The variable x can be written in terms of z by solving 2x + 2z = 8 for x. Step 3: To find y in terms of z, substitute 4 z, for x in the first given equation. Try some Q s: 33-34 2x + 2z = 8 2x = 8 2z x = 4 z x + y + z = 6 (4 z) + y + z = 6 y = 2 All solutions have the form (4 z, 2, z), where z can be any real number. There are infinitely many solutions. Slide 63

Section 9.1 practice Checking for solutions to a system of three equation Setting a up a system of equations Using substitution to solve a linear system of equations Solving a linear system in three variables Finding the number of tickets sold Recognizing an inconsistent system Solving a system with infinitely many solutions Try some Q s: 9-12 Try some Q s: 49a Try some Q s: 13-18 Try some Q s: 19-30 Try some Q s: 47 Try some Q s: 31-32,41-42 Try some Q s: 33-34 Slide 64

End of week 1 You again have the answers to those problems not assigned Practice is SOOO important in this course. Work as much as you can with MyMathLab, the materials in the text, and on my Webpage. Do everything you can scrape time up for, first the hardest topics then the easiest. You are building a skill like typing, skiing, playing a game, solving puzzles. NEXT TIME: Factoring polynomials, rational expressions, radical expressions, complex numbers