APPH 4200 Physics of Fluids

Similar documents
APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids

Physics 181. Particle Systems

Classical Mechanics ( Particles and Biparticles )

11. Dynamics in Rotating Frames of Reference

Week 9 Chapter 10 Section 1-5

CONDUCTORS AND INSULATORS

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Conservation of Angular Momentum = "Spin"

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Physics 111: Mechanics Lecture 11

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Chapter 11 Angular Momentum

APPH 4200 Physics of Fluids

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

PHYS 705: Classical Mechanics. Newtonian Mechanics

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Study Guide For Exam Two

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Dynamics of Rotational Motion

CHAPTER 10 ROTATIONAL MOTION

Physics 114 Exam 3 Spring Name:

So far: simple (planar) geometries

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

Finite Wings Steady, incompressible flow

Chapter 11 Torque and Angular Momentum

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Problem Points Score Total 100

Spring 2002 Lecture #13

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Rigid body simulation

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

kq r 2 2kQ 2kQ (A) (B) (C) (D)

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

The classical spin-rotation coupling

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

10/9/2003 PHY Lecture 11 1

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

Physics 207: Lecture 27. Announcements

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

Lecture10: Plasma Physics 1. APPH E6101x Columbia University

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

PHYSICS 231 Review problems for midterm 2

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability:

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

Three-dimensional eddy current analysis by the boundary element method using vector potential

Lecture 5.8 Flux Vector Splitting

Module 3: Element Properties Lecture 1: Natural Coordinates

CHAPTER 14 GENERAL PERTURBATION THEORY

coordinates. Then, the position vectors are described by

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

PHYS 1441 Section 002 Lecture #15

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

APPENDIX F WATER USE SUMMARY

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

Electron-Impact Double Ionization of the H 2

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Spin-rotation coupling of the angularly accelerated rigid body

n

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

Affine transformations and convexity

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Numerical Heat and Mass Transfer

Chapter 11: Angular Momentum

ENGI 1313 Mechanics I

Tausend Und Eine Nacht

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Quick Visit to Bernoulli Land

5 The Rational Canonical Form

TRAN S F O R M E R S TRA N SMI S S I O N. SECTION AB Issue 2, March, March,1958, by American Telephone and Telegraph Company

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

In this section is given an overview of the common elasticity models.

Physics 1202: Lecture 11 Today s Agenda

Turbulent Flow. Turbulent Flow

Linear Momentum. Center of Mass.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Astrophysical Fluid Dynamics What is a Fluid?

PHY2049 Exam 2 solutions Fall 2016 Solution:

Transcription:

APPH 42 Physcs of Fluds Rotatng Flud Flow October 6, 29 1.!! Hydrostatcs of a Rotatng Water Bucket (agan) 2.! Bath Tub Vortex 3.! Ch. 5: Problem Solvng 1 Key Defntons & Concepts Ω U Cylndrcal coordnates (Appendx B) Two smple cases of crculaton: rgd rotaton and lne vortex (rrotatonal) When Ω = (rrotatonal) then flow s addtve lnear and Bernoull s Prncple apples everywhere Crculaton s Γ da Ω, and Γ s conserved n ( moves along wth) an nvscd flud. (Kelvn s Theorem) 2

What s the Surface of Rotatng Bucket? 3 Sold Body Rotaton (Specal Case of Rotatonal Flow) 4

Bernoull-lke Formula for Sold-Body Rotaton (Condton for force balance n rotatng frame) 5 Bath Tub Vortex The free surface of a tme-ndependent bathtub vortex n a rotatng cylndrcal contaner wth a dran-hole at the bottom. (a) 6 rpm, (b) 12 rpm, and (c) 18 rpm. The water n the central regon s spnnng fast and the depth of the surface dp ncreases when the rotatonal velocty of the contaner s ncreased. 6

VOLUME 91, NUMBER 1 P H Y S C A L R E V E W L E T T E R S week endng 5 SEPTEMBER 23 Anatomy of a BathtubVortex A. Andersen, 1,2, * T. Bohr, 1 B. Stenum, 2 J. Juul Rasmussen, 2 and B. Lautrup 3 1 The Techncal Unversty of Denmark, Department of Physcs, DK-28 Kgs. Lyngby, Denmark 2 Rsø Natonal Laboratory, Optcs and Flud Dynamcs Department, DK-4 Rosklde, Denmark 3 The Nels Bohr nsttute, Blegdamsvej 17, DK-21 Copenhagen Ø, Denmark (Receved 11 March 23; publshed 5 September 23) We present experments and theory for the bathtub vortex, whch forms when a flud drans out of a rotatng cylndrcal contaner through a small dran hole. The fast down-flow s found to be confned to a narrow and rapdly rotatng dranppe from the free surface down to the dran hole. Surroundng ths dranppe s a regon wth slow upward flow generated by the Ekman layer at the bottom of the contaner. Ths flow structure leads us to a theoretcal model smlar to one obtaned earler by Lundgren [J. Flud Mech. 155, 381 (1985)], but here ncludng surface tenson and Ekman upwellng, comparng favorably wth our measurements. At the tp of the needlelke surface depresson, we observe a bubble-formng nstablty at hgh rotaton rates. 11 1.5 1 (a) h [cm] 9.5 9 8.5 8.2.4.6.8 1 r [cm] 5 (b) 4 v [cm/s] 3 2 1.4.8 1.2 1.6 2 r [cm] 7 Bath Tub Vortex (Example of rrotatonal flow) 8

, Bath Tub Vortex (more) ' 1- '.J ll r- J r. è V.J ) v ) D ljì ') w a l - o J V J 'l - - l l(. 1 D (. 1:: J l1) 'V (l )-. 1 l),.. Y' J rl l Q) :: -p:. D ', J l (Ì t V' - ( t. ;) -. v cì tf,/ tv ( rt f t.t., t 1) L- ( ' (l L. ù 'J : 3 : ( l ra.t V' 1 b, () l- '; )1 (1 + ',, ( r c: r f Lc t ( ct :) tl.& : l (b ), (( na ) X V :s -tñ c:.t ( n l c. J,: X - ' u:, (t ' ob V 1 r.. ( r: a (ß!. c. -t L tj 1 ) lj :; lo 1: l- L q) ' Q! q; ' Q f l 'u ' 1 oj j () ) ' u.'ò Q ) 't _ 9 Bath Tub Vortex Shape 1

Chapter 5 Problems 5.2) Rankne vortex 5.4) Vortex mage method 5.7) Mechancal energy of crculaton 5.8) Vortcty dynamcs 11 Problem 5.2 2. A tornado can be dealzed as a Rankne vortex wth a core of dameter 3 m. The gauge pressure at a radus of 15 m s -2 Njm2 (that s, the absolute pressure s 2 Njm2 below atmospherc). (a) Show that the crculaton around any crcut surroundng the core s 5485 m2 js. (Hnt: Apply the Bernoull equaton between nfnty and the edge of the core.) (b) Such a tornado s movng at a lnear speed of 25 mjs relatve to the ground. Fnd the tme requred for the gauge pressure to drop from -5 to -2 Njm2. Neglect compressblty effects and assume an a temperature of 25 C. (Note that the tornado causes a sudden decrease of the local atmospherc pressure. The damage to structures s often caused by the resultng excess pressure on the nsde of the walls, whch can cause a house to explode.) dnates (R, cp, x) s 12

'; l,. l Problem 5.2 : V ) l. f l -l : ': - Ò V r. 'R 't, - / -! / J ll -' -: j J, 1 a ) L ( ' v 1!, tv J rlt vj L : r l -t - t. V' ') ;) 4 -t (' t' )N 1: (- 1- L :: y.- 1 1 U Q. lc- v -- ) ) '' v 1 -- N ') 't 1 :J t; t t- ' L t' l, CL (:J Q : 11; Y. l -L t. ;) () t C L.N ') q; t t tv l Lr -t c o N fì 3 ) L ' J,,. ( -- - r ' f,-j 'Ì : 14 - V 13 Problem 5.2 (cont.) (v l O t!. V r- N, lv ' ' -- (V t: M rv ( -, l. r - l. J.j l' ( 'f N.c fj C: (' t (' tv N Q. f. ', v. c- ',, J l rj N ' lj 2) rl L. r '; (', ': rv n :: 4. N ) t ) l/ ) òc - (V Q J (' ( J r: ' r; /' r- / : Q. ' 1./ f t Q (/ l: j V v t (' Q. () t- (1?- e. - f: /' '; N Q r è j l t. Ln Ç) C' lù O l Q ') ) l rj - (J ' l l :: C: cy! t= h J d 1-- C) t L :, L J t- (: H CD l-.è Ç). ÇL 14

Problem 5.4 4. Consder the flow n a 9 angle, confned by the walls () = and () = 9. Consder a vortex lne passng through (x, y), and orented parallel to the z-axs. Show that the vortex path s gven by 1 1 2 + 2 = constant. x y (Hnt: Convnce yourself that we need three mage vortces at ponts (-x, _y), (-x, y) and (x, -y). What are ther senses of rotaton? The path lnes are gven by dxjdt = U and dyjdt = v, where U and v are the velocty components at the locaton of the vortex. Show that dyjdx = vju = _y3 jx3, an ntegratop. of gves the result.) whch 15 Fo/( L /V /' Uo/2 T (CA, (:;S L( fl S t 'S V L. AV Tì í S'. 'Tl-t f J ÔA-rLt tlr ojt (2,4 ch E (N ;J-,, 't ì ). (s C-t - 'r ') A - ß,- ) J( =- C. Vl 'r L.H E/(.Ç')C ce, A-l L- c) Lo F.fow. l-û L7( jjl l. F ( S ç ' L '( 7H L 5 CJ F TH rr O( è c cjl4-7jo-u /. fj ê: -7 A-l lt /r t r1 A-'9/l v D /? -c ') l( _,. f,. E oa (, v 9 he p4 Í (s' v.( f)'l -f p l C bl 71 v r?. Tc- f S r 'A-l 5 py Problem 5.4 ( k A4,r :l, 't ) // / (l$ (j (x,-y) v o. ('2. ') l/o./f ( c' ( r2 J r td -- vhl C. A-t.L f. ljdè. FL ÙL. f/è)j/'7 (ôul'v' 77 ()A5 T D Pl c H ß J l'. 4- '( (! cj r- ( tft c) ç 1,,.A L L / t 1/ E Å. ò '2 vt 4- t- rl ÒL..c.'T' VSl-. 7F w'2 /h ),4 v- t ka- ' (r C/ ò/ (l'l F off ô So (-r Q ( 12 C () L&4Tlc) -l rev. tí f-ùv1 A-t. c: --jj D r-&/' TSc. Æt c: --rl tj plc) L- -'fue Lvf A!CD t Hl,f/).O., -l x T D t.,.t(' frla-rrz Q A A. L- ;2' L -l( s- /Lo-1 -, L P L l) ' P,/ l r tj D/l v1rll F L r ( (. l) r 7P ( (v'l:rf UO 12(1 t:,'es l f: ff 6(Y /' Ç'l LL- S A--- VL ç, 16

r- r' l r- ),, :t - : 3.3 () ) V c Problem 5.4 (cont.) J. t L t.r -- L - 'tnc:n f. C- r- l':. ( c. l 1 tv ( )- l - Ç:. f: t; 1-' 'J y. N. ' l' t; J,. c- cv r. J- * ' rl l r. N v N, ( 1- J- 'X t- j L /(2 r-)- /' h.)- N 1 C- ( -- 'V J x: 'f. )v. t' ll t'l) ('. t r; 'j - Y. ). -. )- Y- c: x ')( N l=- 'X C 1 lt. j + J C' f' J-- l t t, y. ) l- t- - t j t' 't )( e (Ó C' N + 1.. ( tl ),j r- t- t N t:x N Q C1 t) r- -- (' íj fj F 1-, Q N t -l ( (, ), v ', 17 Problem 5.7 7. A constant densty rrotatonal flow n a rectangular torus has a crculaton r and volumetrc flow rate Q. The nner radus s r, the outer radus s r2, and the heght s h. Compute the total knetc energy of ths flow n terms of only p, r, and Q. 18

Problem 5.7 - t- - ;.Q t' rj L -- S- tl ( c: t -- 'ì C: 'te- t :. :- * L.-C t' 3 -. N. t- V tj '. t: ' v l C-,,- ê- L 'X CJ b Q) -C -C *- -N l ( H ). - l ' 1 ' J CJ 'f. (= l-c ::.k f 19 Problem 5.8 8. Consder a cylndrcal tank of radus R flled wth a vscous flud spnnng steadly about ts axs wth constant angular velocty Q. Assume that the flow s n a steady state. (a) Fnd fa 6). da where A s a horzontal plane surface through the flud normal to the axs of rotaton and bounded by the wall of the tank. (b) The tank then stops spnnng. Fnd agan the value of fa 6). da. 2

b. U, l ( j r:s ' ') L ' Problem 5.8 o -t l- c; 'v J l ct L :: 'X ) J ' tj l l -t J! t c: J () 'J. e J :: J.-. - e J' 1. r- (' j J ( r 1 J ; J G - -- - - oj )- -r ( _ 'l t ' b -t' _--. C.-- b N (' j v v -t t N. ' j J -l J! (; ( ' l' ( -s V - oj.t - l- : S :Lt' 21 Summary Two specal examples of vortcty: soldbody rotaton (unform) vortcty and the lne vortex (zero vortcty away from orgn) Sample problems n rotatng flud dynamcs: Bathtub vortex Tornados, movng lne vortces Mass flow 22