CCT/03-21 Evaluation of the depression constants for D and 18 O isotopes for the triple-point temperature of water

Similar documents
VSMOW Triple Point of Water Cells: Borosilicate versus Fused- Quartz

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

CHEM 1451 Lab Week 09 Colligative Properties Postlab Report. Coach s Name

INTERNATIONAL COMPARISON OF WATER TRIPLE POINT CELLS LEADING TO A MORE PRECISE DEFINITION OF THE KELVIN

concentration of solute (molality) Freezing point depression constant (for SOLVENT)

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases.

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

European Association of National Metrology Institutes

Physical Properties of Solutions

64 previous solution

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

SOLUTION CONCENTRATIONS

Use the Equations given in your notes to solve the Colligative Property Questions. Freezing Boiling Point ( C)

Factors that Effect the Rate of Solvation

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

CERTIFICATE OF CALIBRATION

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown?

Sample Problem. (b) Mass % H 2 SO 4 = kg H 2 SO 4 /1.046 kg total = 7.04%

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Physical Properties of Solutions

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

Report from the Mise en Pratique Task Group: the next international temperature scale and the mise en pratique for the definition of the kelvin

CH 222 Chapter Eleven Concept Guide

Chapter 4 Part-B: Density and Vapor Pressure Osmometry Studies of Aqueous Solutions of N-Butyl-Pyridinium Bromide at K

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

Announcements. It is critical that you are keeping up. Ask or see me if you need help. Lecture slides updated and homework solutions posted.

CCT/10-21 Extrapolation of the ITS-90 down to the boiling point of nitrogen from the triple point of argon

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) =

11/4/2017. General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy. Chapter 4 Physical Properties of Solutions

WATER, ICE AND THE TRIPLE POINT

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

Chapter 10: CHM 2045 (Dr. Capps)

Environmental Isotopes in Hydrology. Woocay substituting for Walton

Indian School Muscat

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

NIST CERTIFICATION OF ITS-90 FIXED-POINT CELLS FROM K TO K: METHODS AND UNCERTAINTIES

INTRODUCTORY CHEMISTRY FOR WATER QUALITY TECHNOLOGY I. Chemistry 11 and Principles of Mathematics 12 is strongly recommended.

Lab 3: Determination of molar mass by freezing point depression

Unit 7. Solution Concentrations and Colligative Properties

VAPOR PRESSURE LOWERING - Described by RAOULT'S LAW

Intermolecular Forces

Depression of the Freezing Point

The Water Triple Point - A Reference Cell Close to the ITS-90 Value

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression

CHM Colligative properties (r15) Charles Taylor 1/6

Chem 260 Quiz - Chapter 4 (11/19/99)

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is:

They provide us with the knowledge of phase composition and phase stability as a function of temperature (T), pressure (P) and composition(c).

Chapter 11. Properties of Solutions Solutions

Freezing Point Depression: Can oceans freeze? Teacher Advanced Version

Solution formation. The nature (polarity, or composition) of the solute and the solvent will determine. Factors determining rate of solution...

Viscosities of Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA) at T = (90-150) C

Properties of Solutions. Chapter 13

Unit 10: Part 1: Polarity and Intermolecular Forces

Chapter 11. General Chemistry. Chapter 11/1

General Practical Chemistry EXPERIMENTS REOPRTS 101 Chem & 104 Chem

PSI AP Chemistry: Solutions Practice Problems

FE 537. Catchment Scale. (Isotope Hydrology Primer Aside) Oregon State University

OFB Chapter 6 Condensed Phases and Phase Transitions

General Chemistry II, Unit II: Study Guide (part 2)

PSI AP Chemistry Solutions Practice Problems

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions

Chemistry 201: General Chemistry II - Lecture

Why 17 O-excess? (And, what is it?)

Colligative properties CH102 General Chemistry, Spring 2011, Boston University

How do you really know what the temperature is? Michael de Podesta

Kinetic Isotope Effects

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz

Structural characterization begins with a purity check!

solubility solubilities that increase with increasing temperature

Exam #5 May 2, Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator.

Mixtures and Solutions

CHEMISTRY Ch. 14 Notes: Mixtures and Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

AP CHEMISTRY CHAPTER 8 PROBLEM SET #3. 1. Determine if the following pairs would form a solution. Explain your answer. a.

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Brief reminder of the previous lecture

H H C C 1.11 N N 0.37 O O O S 0.014

Environmental Health. Solution Basics

Stable Isotopes OUTLINE

CALIBRATION OF LABORATORY GLASSWARE: BUTYROMETER, PIPETTES, LACTOMETERS, THERMOMETER AND BURETTES

Required math skills:

CHEMISTRY CP Name: Period:

CBSE Class 11 Chemistry Important Questions Chapter 1Some Basic Concepts of Chemistry. 1 Marks Questions

Lesson Plans Chapter 15: Solutions & Solution Chemistry

PX-III Chem 1411 Chaps 11 & 12 Ebbing

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

GEOL 414/514 ACTIVITY COEFFICIENTS OF DISSOLVED SPECIES

Practice Examination #1

1. stirring (agitation) 2. temperature 3. the surface area of the dissolving particles

Physical Pharmacy. Solutions. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Milwaukie HS Chemistry Linman. Period Date / /

Fundamental Temperature Measurement: Re-defining the Boltzmann Constant How do you really know what the temperature is? Michael de Podesta

UNIT 5: STOICHIOMETRY

Today is Wednesday, January 10 th, 2018

Colligative Properties

CIE Chemistry A-Level Practicals for Papers 3 and 5

Transcription:

CCT/03- Evaluation of the depression constants for D and 8 O isotopes for the triple-point temperature of water D R White Measurement Standards Laboratory of New Zealand, rwhite@irlcrinz W L Tew National Institute for Standards and Technology, westontew@nistgov Introduction In a recent paper presented to the Chicago symposium on Temperature, its Measurement and Control in Science and Industry, the authors reported an assessment of the depression constants for D and 8 O isotopes on the triple-point temperature of water [] The paper compared estimates of the isotopic depression constants from three sources: values interpolated from reported freezing-point or triple-point temperatures of the nearly pure isotopomers H 6 O, D 6 O and H 8 O, values obtained from a set of measurements of 5 triple-point-of-water cells with varying levels of isotope depletion, and the results of a reanalysis of Kiyosawa s [] measurements of freezing-point elevation with isotopically enriched waters The paper recommended the values of constants determined from a reanalysis of Kiyosawa s data Unfortunately, because of the page restriction, not all of the analysis or issues could be addressed in detail The purpose of this paper is to elaborate on aspects of the paper that might be of interest to those involved with the definition of the temperature scale Specifically we describe the derivation of Equation 5 of [], report the reanalysis of Kiyosawa s data in detail, note some unresolved issues relating to uncertainties in Kiyosawa s results, and include the results of measurements of LaMer and Baker [3] Derivation of Equation (5) Conventionally the isotopic composition of natural waters is described in terms of the departure of the isotope concentrations from that of Vienna-SMOW, a standard reference material of known isotopic composition representing Standard Mean Ocean Water The deviations are reported as delta-values: 8 6 8 6 8 ( O/ O) sample ( O/ O) V-SMOW δ O = 8 6, ( O/ O) V-SMOW and similarly for δd and δ 7 O The best measured values of the ratios of the isotopes in V-SMOW are (D/ H) V-SMOW = 0000 55 76(5), ( 8 O/ 6 O) V-SMOW = 000 005 0(45), and ( 7 O/ 6 O) V-SMOW = 0000 379 9(8) If it is assumed that the heavy isotopes are dilute, so that the isotopic effects are linear and there is no interaction between the different isotopes, the influence of variations in the concentrations on the triplepoint temperature can be described by: 7 8 T = T + A δd + A7 δ O + A δ O meas V-SMOW D 8 O O where T V-SMOW = 736 K by definition The A i coefficients can be determined by additionally assuming the triple-point temperature is proportional to the mole fraction of the various species Thus, the effect of deuterium is modelled as [H O] [DO] T = T (H O) + T (DO) [H O] + [D O] [H O] + [D O] This can be expressed also in terms of the ratio of deuterium to hydrogen:

CCT/03- [D]/[H] T = T ( H O) + T (DO) + [D]/[H] + [D]/[H] This can be applied to V-SMOW, for which the ratio [D]/[H] is known and equal to V-SMOW as given above That is T = T (H O) + T (DO) + + and hence the triple-point temperature of water is T = T + T (H O) + [D]/[H]) + [D]/[H] V + T (D O) + [D]/[H] + V The term in [D]/[H] can be substituted using the definition of δd: Hence T = T SMOW SMOW (D / H) δd = or (D / H) = ( + δd) V SMOW + δd ( T (D O) T (H O) ) ( + ( + δd) )( + Note that the temperature difference is a weak non-linear function of δd because of the term in δd in the denominator For the cases when δd < the non-linearity is within 00% (0% for the 8 O case) Therefore, for delta values close to zero, ie waters close to SMOW, the equation is well approximated by: ( T (D O) T (H O) ) ( ) T = T + δd + This is Equation (5) in [] Analogous equations apply for the 7 O and 8 O isotopes 3 Analysis of Kiyosawa s data Kiyosawa reported the results of two experiments to determine the freezing-point dependence of water on the molal concentration of the heavy isotopes D and 8 O A plot of the composition of Kiyosawa s solutions together those used in [] is shown Figure The following two sub-sections summarise the reanalysis of the data reported in [] 3 Deuterium Columns and 3 of Table summarise the results of Kiyosawa for mixtures of deuterium-enriched waters The mole fraction (Column ), X, is derived from the molality, m, according to the formula ) X 80m = 000 + 80m A fit of the observed temperature difference to the equation T = kx yields

k = Ti X X i i = 40336 K CCT/03- Molality D Mole fraction T observed /K T fitted /K Residuals /K (mol/kg) 0099955 000797 000679 000748 000046 00093 00085 000675 000739 000057 0999 0003576 004 00446 00003 0083 00036 0038 004609 00008 09979 0005370 005 0066 00006 0303 00054 007 00830 00003 04007 000756 009 008863-000034 04003 000757 0088 008868 000007 049666 0008866 00358 003576-000004 049794 0008888 00363 0035853-000045 059768 000650 0046 004957 000036 0609 00075 00437 004359-000044 Table : A summary of the analysis of the results of Kiyosawa s measurements of freezing-point temperature versus molality of the enriched deuterium solutions Predicted values of T are given in Column 4 of Table, and the residuals in the fit (observed fitted values) are given in Column 5 The standard deviation, s, of the residuals is 04 mk, hence the uncertainty in k is s s = = 007 K k ( X ) / i Since T = kx, T for the two pure isotopomers can be estimated by setting X =, and the term T(D O) T(H O) in Equation (5) can be replaced by k Hence, the depression coefficient when the deuterium concentration is expressed in term of delta values is 68(7) µk With degrees of freedom, the expanded uncertainty for a 95% level of confidence is approximately 6 µk, based on a coverage factor of 3 Oxygen, 8 O Table summarises Kiyosawa s results and the reanalysis of the results for 8 O Molality (mol/kg) Mole fraction T observed /K T fitted /K Residuals /K 05034 000899 00049 000884 000039 074 0067 0004 0004067-00005 5000 0063 000867 0008444-00003 030 003499 0040 003-00007 8570 004894 00550 005709 0000 Table : A summary of the analysis of the results of Kiyosawa s measurements of freezing-point temperature versus molality of the enriched 8 O solutions In this case k = 03(4) K, so the depression constant is estimated as 64(8) µk, with a corresponding expanded uncertainty of 3 µk with a coverage factor of 78 33 Uncertainties in Kiyosawa s data

CCT/03- Unfortunately Kiyosawa provides no information about the uncertainties in his measurements Indeed the description of the experiments is very brief: D 6 O (998%) and H 8 O (99%) were purchased from Stohler and Prochem, respectively The H 6 O used was distilled from deionised water The molal concentrations m of D 6 O and H 8 O were calculated from the purity of the purchased specimens, with isotope waters other than D 6 O and H 8 O being regarded as H 6 O The freezing point depression or elevation was measured with an osmometer (Advanced Instruments, Type 3W), which had been calibrated with standard aqueous NaCl solutions (7) The osmometer was equipped with a thermistor to detect the freezing point of the aqueous solution to be examined and a cooling bath in which a glass tube containing the aqueous solution could be cooled slowly The freezing points were measured thrice at one molal and the deviation of each measured value from the mean was within ±000037 ºC The measured freezing-point depressions were expressed in terms of θ/m and the change in the freezing point Τ from 0 ºC From the description of the experiment there are several possible sources of uncertainty, in addition to the Type A uncertainty determined from the results above: Calibration of the osmometer The specifications for the 3W could not be located but other osmometers manufactured by Advanced instruments have linearities of about % and repeatabilities of between 05% and 0% depending on the instrument model The Type A uncertainties calculated above are consistent with an instrument of % accuracy Uncertainties in the supplier s measurements of isotopic composition of the supplied waters Assumption that, for example, only the [D] is varying during the experiments on D In particular, a small difference between the D/H ratios in the H 8 O and H 6 O waters would bias the results of the 8 O measurements Measurements of freezing-point temperatures within a capillary instead of triple-point temperatures in full-sized cells Kiyosawa assumed his solvent water to be pure H 6 O, when in reality this was probably distilled tapwater taken from fresh continental surface water in Japan Therefore, it is reasonable to assume that the isotopic composition of this water was slightly depleted with respect to SMOW, and close to the GMWL In this sense, the mole fraction, X, shown here is not absolute but an excess mole fraction relative to the solvent water The uncertainty due to the true composition of the solvent introduces some uncertainty in the meaning of X=0 and hence also in the k values as the least-square fits are forced to T=0 at X=0 Thus there remain several potentially significant sources of uncertainty in the measurements Certainly the expanded uncertainties reported in [], based only on the Type A components, will be optimistic 4 Comparison with other data Table 3 summarises various measurements of the deuterium depression constant Source dt/dx D /K Standard uncertainty /K Interpolation between tp values [] 38 00 Kiyosawa [] 4034 007 (ν = ) White et al [] 44 009 (ν = 3) LaMer and Baker [3] 4 0009 (ν = 6) Table 3: Summary of various estimates of the deuterium depression constant The interpolated value of dt/dx D given in the first row of Table 3 is provided for comparison only It is known from theory and experiment that the dependence of the temperature on mole fraction is not linear so the interpolated value is expected to be low As described above, the value of Kiyosawa is devrived from measured freezing-point depressions of dilute solutions The value from White et al is based on the measurements of triple-point cells made with depleted water These measurements are corrected for 8 O composition using Kiyosawa s value for the 8 O depression constant The last value is that of LaMer and Baker, dates from 934, and is based on a quadratic fit of the freezing points of strong solutions of D O in H O As with Kiyosawa s data, LaMer and Baker s data was taken using osmometry and the uncertainty

CCT/03- is a Type A value determined from the least squares fit to the data and subject to similar uncertainty concerns as described above for Kiyosawa s data Figure shows the observed freezing points as a function of deuterium concentration from the results of both LaMer and Baker and Kiyosawa It is notable that the results of Kiyosawa and LaMer and Baker are not quite consistent, there being about a 45% difference between the two while the combined standard uncertainty accounts for about 05% However, as discussed above, the total uncertainty is certainly low because only the Type A components have been accounted for 0E-0 White, et al, 003 Kiyosawa, 99 0E-0 X ( 8 O) 0E-03 0E-04 0E-06 0E-05 0E-04 0E-03 0E-0 X (D) Figure The absolute mole fractions in deuterium X(D) and 8 O, X( 8 O), for the isotopic water solutions used by Kiyosawa and by White, et al The assumption being made is that Kiyosawa s solvent water (open square) was only slightly depleted with respect to SMOW

CCT/03-0 LaMer & Baker (934) Kiyosawa (99) Lamer & Baker, Fit Kiyosawa, Fit T / K 0 00 000 000 00 0 X (D O) Figure The freezing-point depression data for H O D O solutions as reported by LaMer and Baker, 934 and Kiyosawa, 99 5 Discussion The magnitude of isotope corrections for the temperature of triple-point cells is sufficiently small (< 80 µk) that the uncertainty in the corrections is currently negligible If the Type A uncertainties are indicative of the total uncertainty in Kiyosawa s measurements then the expanded uncertainty in typical corrections is less than µk A five-fold-higher value due to other factors would still be a minor contribution to the total given the other sources of uncertainties in realisations of the triple point However, should the depression constant be required with a greater accuracy and confidence then the values should be redetermined with an improved experiment Given the limited variation in the isotopic composition of natural waters, the strong correlations between the D and 8 O concentrations in natural waters, and the limited accuracy of temperature difference measurements, any future determinations of the isotopic depression constants should be determined using triple-point cells manufactured from enriched waters with delta values greater than Also the composition of the cells should be determined by measurement and not inferred from the manufacturer s specification of the waters References [] White D R, Dransfield T D, Strouse G F, Tew W L, Rusby R L, and Gray J, Effects of Heavy Hydrogen and Oxygen on the Triple-Point Temperature of Water, In Temperature, Its measurement and Control in Science and Industry, Vol 7 (In Press) [] Kiyosawa, K J, Freezing-point of mixtures of H 6 O and H 8 O, Soln Chem 0, 583-588 (99) [3] LaMer, V and Baker, W, J Am Chem Soc 56, 64-643 (934)