Fuzzy Hv-submodules in Γ-Hv-modules Arvind Kumar Sinha 1, Manoj Kumar Dewangan 2 Department of Mathematics NIT Raipur, Chhattisgarh, India

Similar documents
@FMI c Kyung Moon Sa Co.

On Control Problem Described by Infinite System of First-Order Differential Equations

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

Research Article A Note on Multiplication and Composition Operators in Lorentz Spaces

7 Wave Equation in Higher Dimensions

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

Variance and Covariance Processes

BMOA estimates and radial growth of B φ functions

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics

Reichenbach and f-generated implications in fuzzy database relations

Extremal problems for t-partite and t-colorable hypergraphs

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Deviation probability bounds for fractional martingales and related remarks

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

THE MODULAR INEQUALITIES FOR A CLASS OF CONVOLUTION OPERATORS ON MONOTONE FUNCTIONS

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

K. G. Malyutin, T. I. Malyutina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE

Numerical solution of fuzzy differential equations by Milne s predictor-corrector method and the dependency problem

Intuitionistic Fuzzy 2-norm

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

A New Kind of Fuzzy Sublattice (Ideal, Filter) of A Lattice

Secure Frameproof Codes Through Biclique Covers

arxiv: v1 [math.ca] 25 Sep 2013

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n. Abdelwaheb Dhifli

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

arxiv: v1 [math.co] 4 Apr 2019

Computer Propagation Analysis Tools

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

Monochromatic Wave over One and Two Bars

functions on localized Morrey-Campanato spaces over doubling metric measure spaces

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources

Quantum Algorithms for Matrix Products over Semirings

Roughness in ordered Semigroups. Muhammad Shabir and Shumaila Irshad

-intuitionistic (fuzzy ideals, fuzzy soft ideals) of subtraction algebras

Lower and Upper Approximation of Fuzzy Ideals in a Semiring

The sudden release of a large amount of energy E into a background fluid of density

On the local convexity of the implied volatility curve in uncorrelated stochastic volatility models

Mixture Regression-Cum-Ratio Estimator Using Multi-Auxiliary Variables and Attributes in Single-Phase Sampling

Characterization of Gamma Hemirings by Generalized Fuzzy Gamma Ideals

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

PHYS PRACTICE EXAM 2

A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS

LOGARITHMIC ORDER AND TYPE OF INDETERMINATE MOMENT PROBLEMS

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

arxiv: v1 [math.fa] 20 Dec 2018

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

International Journal of Pure and Applied Sciences and Technology

4 Sequences of measurable functions

Application of Bernoulli wavelet method for numerical solution of fuzzy linear Volterra-Fredholm integral equations Abstract Keywords

On the stability of a Pexiderized functional equation in intuitionistic fuzzy Banach spaces

GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES

CS 188: Artificial Intelligence Fall Probabilistic Models

Product of Fuzzy Metric Spaces and Fixed Point Theorems

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES

Research Article Weighted Hardy Operators in Complementary Morrey Spaces

Lecture 22 Electromagnetic Waves

An Introduction to Malliavin calculus and its applications

Dual Hierarchies of a Multi-Component Camassa Holm System

On The Estimation of Two Missing Values in Randomized Complete Block Designs

New sufficient conditions of robust recovery for low-rank matrices

Authors name Giuliano Bettini* Alberto Bicci** Title Equivalent waveguide representation for Dirac plane waves

Existence of multiple positive periodic solutions for functional differential equations

Reinforcement learning

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

VOL. 1, NO. 8, November 2011 ISSN ARPN Journal of Systems and Software AJSS Journal. All rights reserved

Asymptotically Lacunary Statistical Equivalent Sequence Spaces Defined by Ideal Convergence and an Orlicz Function

Faα-Irresolute Mappings

Journal of Inequalities in Pure and Applied Mathematics

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order.

Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Research on the Algorithm of Evaluating and Analyzing Stationary Operational Availability Based on Mission Requirement

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

f h = u, h g = v, we have u + v = f g. So, we wish

An S-type singular value inclusion set for rectangular tensors

EVENT HORIZONS IN COSMOLOGY

Order statistics and concentration of l r norms for log-concave vectors

Existence Theory of Second Order Random Differential Equations

Available online through ISSN

The Production of Polarization

Orthotropic Materials

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

KINEMATICS OF RIGID BODIES

Lecture 20: Riccati Equations and Least Squares Feedback Control

Energy dispersion relation for negative refraction (NR) materials

Functions Defined on Fuzzy Real Numbers According to Zadeh s Extension

Modelling Dynamic Conditional Correlations in the Volatility of Spot and Forward Oil Price Returns

On the Stability of the n-dimensional Quadratic and Additive Functional Equation in Random Normed Spaces via Fixed Point Method


Syntactical content of nite approximations of partial algebras 1 Wiktor Bartol Inst. Matematyki, Uniw. Warszawski, Warszawa (Poland)

Transcription:

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] Fuzz v-submodules in Γ-v-modules Avind Kuma Sinha 1, Manoj Kuma Dewangan 2 Depamen of Mahemaics NIT Raipu, Chhaisgah, India Absac In his pape, we inoduced he concep of Γ-v-modules, which is a genealizaion of Γ -modules vmodules. The noion of, q -fuzz v-submodules of a Γ-v-module is povided some elaed popeies ae invesigaed. Kewods peopeaion, Algebaic hpesucue, Γ-v-module,, q -fuzz v-submodule. I. INTRODUCTION The algebaic hpesucue is a naual genealizaion of he usual algebaic sucues which was fis iniiaed b Ma [1]. Afe he pioneeing wok of F. Ma, algebaic hpesucues have been developed b man eseaches. A sho eview of which appeas in [2]. A ecen book on hpesucues [3] poins ou hei applicaions in geome, hpegaphs, bina elaions, laices, fuzz ses ough ses, auomaa, cpogaph, codes, median algebas, elaion algebas, aificial inelligence pobabiliies. Vougiouklis [4] inoduced a new class of hpesucues so-called v-sucue, Davvaz [5] suveed he heo of v-sucues. The v-sucues ae hpesucues whee equali is eplaced b nonemp inesecion. The concep of fuzz ses was fis inoduced b Zadeh [6] hen fuzz ses have been used in he econsideaion of classical mahemaics. In paicula, he noion of fuzz subgoup was defined b Rosenfeld [7] is sucue was heeb invesigaed. Liu [8] inoduced he noions of fuzz subings ideals. Using he noion of belongingness quasi-coincidence q of fuzz poins wih fuzz ses, he concep of, -fuzz subgoup whee, of, q, q, q wih q subgoup is he noion of ae an wo was inoduced in [9]. The mos viable genealizaion of Rosenfeld s fuzz, q -fuzz subgoups, he deailed sud of which ma be found in [10]. The concep of an, q -fuzz subing ideal of a ing have been inoduced in [11] he concep of, q -fuzz subnea-ing ideal of a nea-ing have been inoduced in [12]. Fuzz ses hpesucues inoduced b Zadeh Ma, especivel, ae now sudied boh fom he heoeical poin of view fo hei man applicaions. The elaions beween fuzz ses hpesucues have been alead consideed b man auhos. In [13-15], Davvaz applied he concep of fuzz ses o he heo of algebaic hpesucues defined fuzz v-subgoups, fuzz v-ideals fuzz vsubmodules, which ae genealizaions of he conceps of Rosenfeld s fuzz subgoups, fuzz ideals fuzz submodules. The concep of a fuzz v-ideal v-subing has been sudied fuhe in [16, 17].The concep of (, q)-fuzz subhpequasigoups of hpequasigoups was inoduced b Davvaz Cosini [18]; also see [19-24]. As is well known, he concep of Γ ings was fis inoduced b Nobusawa in 1964, which is a genealizaion of he concep of ings. Davvaz e.al. [25] inoduced he noion of, q -fuzz v-ideals of a Γ-v-ing. This pape coninues his line of eseach fo, q -fuzz v-submodules of a Γ-v-module. The pape is oganized as follows: In Secion 2, we ecall some basic definiions of v-modules. In Secions 3 4, we inoduce he concep of Γ-v-modules pesen some opeaions of fuzz ses in Γ-v-modules. In Secion 5, b using a new idea, we inoduce invesigae he (, q)-fuzz v-submodules of a Γ-v-module. he inoducion of he pape should explain he naue of he poblem, pevious wok, pupose, he conibuion of he pape. The conens of each secion ma be povided o undes easil abou he pape. II. BASIC DEFINITIONS We fis give some basic definiions fo poving he fuhe esuls. Definiion 2.1[27] Le X be a non-emp se. A mapping : X [0, 1] is called a fuzz se in X. The complemen of c, denoed b, c is he fuzz se in X given b x 1 x x X. Definiion 2.2[28] Le G be a non emp se : G G ( G) be a hpeopeaion, whee ( G) is he se of all he non-emp subses of G. Whee A B a b, A, B G. aa, bb The is called weak commuaive if x x, x, G. Page 34

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] The is called weak associaive if ( x ) z x ( z), x,, z G. A hpesucue G, is called an v-goup if (i) is weak associaive. (ii) a G = G a = G, a G (Repoducion axiom). Definiion 2.3[28] An v-ing is a ssem ( R,, ) wih wo hpeopeaions saisfing he ing-like axioms: i ( R, ) is an v-goup, ha is, (( x ) z) ( x ( z)) x, R, a R R a R a R; ii ( R, ) is an v-semigoup; iii () is weak disibuive wih espec o ( ), ha is, fo all ( x( z)) ( x z), (( x ) z) ( x z z). x,, z R Definiion 2.4[26] Le R be an v-ing. A nonemp subse I of R is called a lef (esp., igh) v-ideal if he following axioms hold: (i) ( I, ) is an v-subgoup of ( R, ), (ii) RI I (esp., I R I ). Definiion 2.5[26] Le ( R,, ) be an v ing a fuzz subse of R. Then is said o be a lef (esp., igh) fuzz v -ideal of R (1) min{ ( ), ( )} inf{ ( ) : },, if he following axioms hold: x z z x R x, a R (2) Fo all hee exiss R such ha xa min{ ( ), ( )} ( ), a x x, a R (3) Fo all hee exiss z R such ha xz a min{ ( a), ( x)} ( z), (4) ( ) inf{ ( z) : z x } ( x) inf{ ( z) : z x } x, R. especivel {x X (x) } Le μ be a fuzz subse of a non-emp se X le (0, 1]. The se is called a level cu of μ. Theoem 2.2[15] Le R be an v-ing μ a fuzz subse of R. Then μ is a fuzz lef (esp., igh) v-ideal of R if onl ( ) if fo eve (0, 1], is a lef (esp., igh) v-ideal of R. When μ is a fuzz v-ideal of R, is called a level v-ideal of R. The concep of level v-ideal has been used exensivel o chaaceize vaious popeies of fuzz v-ideals. III. Γ-V-MODULES The concep of Γ -ings was inoduced b Nobusawa in 1964. Definiion 3.1[29] Le (R, +) (Γ,+) be wo addiive abelian goups. Then R is called a Γ -ing if he following condiions ae saisfied fo all x,, z R fo all α, β Γ, (1) xα R, (2) (x + )αz = xαz + αz, x(α + β) = xα + xβ, xα( + z) = xα + xαz, (3) xα(βz) = (xα)βz. Definiion 3.2[25] Le (R, ) (Γ, ) be wo v-goups. Then R is called a Γ v-ing if he following condiions ae saisfied fo all x,, z R fo all α, β Γ, 1 x R, 2 (x ) z (xz z), x( ) (x ), x ( z) (x xz), 3 x ( z) (x) z. follows, unless ohewise saed, (R,, Γ) alwas denoes a Γ v-ing. Definiion 3.3[25] A subse I in R is said o be a lef (esp., igh) v-ideal of R if i saisfies (1) (I, ) is an v-subgoup of (R, ), (2) xα I (esp., αx I) fo all x R, I α Γ. In wha Page 35

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] I is said o be an v-ideal of R if i is boh a lef a igh v-ideal of R. Now, we inoduce he concep of Γ v-modules as follows. Definiion 3.4 Le R,, be a - v -ing, ove R f : R M M if hee exiss a, b R, m1, m2 M,,, we have a b m a b m 1 a m m a m a m ; 1 2 1 2 2 a b m a m b m ; 1 1 1 3 a m a m am ; 1 1 1 4. 1 1 (he image of,, m M be a canonical v -goup. M is called a - being denoed b m Thoughou his pape, R M ae a - v -ing - v Definiion 3.5 A subse A in M is said o be a - v -submodule of M if i saisfies he following condiions: 1 A, is a v -subgoup of M, ; 2 x A, fo all R, x A. 4. Fuzz ses in Γ-v-modules v -module ) such ha fo all -module, especivel, unless ohewise specified. Le X be a non-emp se. The se of all fuzz subses of X F X. is denoed b Fo an A X fuzz subse A of X is defined b if x A, A x 0 ohewise, fo all x X. In paicula, when = 1, A ; is said o be he chaaceisic funcion of A, denoed b A x. is said o be a fuzz poin wih suppo x value is denoed b quasicoinciden wih) a fuzz se x 1 o x q., hen we wie, x wien as xq (esp., ) if A fuzz poin (0, 1], he when A = {x}, A x is said o belong o (esp., be x (esp., x 1 ). If x F X, Fo is said o have he sup-pope if fo an non-emp subse A of X, hee exiss x A x. A Nex we define a new odeing elaion elaion, as follows: F X Fo an,, q if onl if define he elaion on F(X) as follows: q F on X,, F X, q Fo an if onl if M 1 2 In wha follows, unless ohewise saed, n 1, 2,... n 0,1, all q means x x implies,,..., such ha which is called he fuzz inclusion o quasi-coincidence q. q does no hold q q fo all x X 0,1. And we whee n is a posiive inege, will denoe 1 2... n fo q implies is no ue. Lemma 4.1[30] Le X be a non-emp se μ, ν F(X). Then μ qν if onl if ν(x) M (μ(x), 0.5) fo all x X. Lemma 4.2[30] Le X be a non-emp se μ, ν, ω F(X) be such ha μ qν qω. Then μ qω. Cleal, Lemma 4.1 implies ha μ ν if onl if M(μ(x), 0.5) = M(ν(x), 0.5) fo all x X μ, ν F(X), i follows fom Lemmas 4.1 4.2 ha is an equivalence elaion on F(X). Now, le us define some opeaions of fuzz subses in a Γ v-module M. Definiion 4.3. Le μ, ν F(M) α Γ. We define fuzz subses b Page 36

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] z M x, Γ. z I is woh noing ha fo an 1 2 1 2 Lemma 4.4. Le,,, F R q 1 1 2 2 fo all α Γ. z M x, zx F M, x M, s s s x s M, s. such ha 1 q2 q. 1 2 especivel, fo all z M α 1 q Then 1 1 2 2 2 1 1 q2 2. FR, Lemma 4.4 indicaes ha he equivalence elaion is a conguence elaion on Γ. Lemma 4.5. Le μ, ν, ω F(R). Then 1,. 3, 2,. F R, fo all α fo all α Γ. 4, 5 fo all α Γ. fo all α Γ. Poof. The poof of (1) (4) is saighfowad. We show (5). Le x R α Γ. If x z fo all, z R. Then x 0 x. Ohewise, we have x M, z M, M p, q xz xz zpq,,,, M p q M a b x z, zpq xa b, a p, b q M, z x. xz ence. IV. This complees he poof. (, Q)-FUZZY V-SUBMODULES OF A Γ V-MODULE In his secion, using he new odeing elaion on F (M), we define invesigae (, q)-fuzz lef (igh) vsubmodules of Γ v-module. Definiion 5.1. A fuzz subse μ of M is called an (, q)-fuzz lef (esp., igh) v-submodule if i saisfies he following condiions: q, (F1a) (F2a) as implies ha hee exiss M such ha x a, q, M s z q, M, s (F3a) as implies ha hee exiss z M such ha xz a (F4a) R q (esp., R q ) fo all α Γ. A fuzz subse μ of M is called an (, q)-fuzz v-submodule of M if i is boh an (, q)-fuzz lef an (, q)-fuzz igh v-submodule of M. Befoe poceeding, le us fis povide some auxilia lemmas. Lemma 5.2. Le μ F (M). Then (F1a) holds if onl if one of he following condiions holds: (F1b) (F1c) z s M s implies, z M x,,0.5 q fo all x, M, s (0, 1]. fo all x, M. Page 37

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] Poof. (F1a) (F1b) Le x, M, s (0, 1] be such ha s. Then fo an z x, we have z M a, b M M, s. ence M, s za b M s so z, q. I follows fom (F1a) ha M, s q. (F1b) (F1c) Le x, M. If possible, le z M be such ha z x μ (z) < = M (μ(x), μ(), 0.5). Then x, μ (z) + < + 1, ha is, zq, a conadicion. ence (F1c) is valid. (F1c) (F1a) Fo if possible, le xq, Then μ(x) < μ(x) < 0.5. If z fo some, z M, b (F1c), we have 0.5 > μ(x) M (μ(), μ(z), 0.5), which implies μ(x) M(μ(), μ(z)). x M a, b x x, ence we have xa b xa b a conadicion. ence (F1a) is saisfied. Lemma 5.3. Le μ F (M). Then (F2a) holds if onl if he following condiion holds: (F2b) fo all x, a M hee exiss M such ha x a M (μ (a), μ(x), 0.5) μ(). Poof. (F2a) (F2b): Suppose ha x, a M. We conside he following cases: (a) M (μ(x), μ (a)) < 0.5, (b) M (μ(x), μ (a)) 0.5. Case a: Assume ha fo all wih x a, we have μ () < μ (x) μ (a). Choose such ha μ() < < M (μ(x), μ (a)). a q, bu Then which conadics (F2a). Case b: Assume ha fo all wih x a x, we have μ() < M (μ(x), μ (a), 0.5). Then 0.5, a0.5, bu 0.5 q, which conadics (F2a).. (F2b) (F2a): Le a Then μ(x) μ (a). Now, fo some wih x a, we have μ () M(μ(a), μ(x), 0.5) M(,, 0.5). If M (, ) > 0.5, hen μ() 0.5 which implies μ() + M (, ) > 1. If M (, ) 0.5, hen μ() M (, ). q., M Theefoe, ence (F2a) holds. Lemma 5.4. Le μ F(M). Then (F3a) holds if onl if he following condiion holds: (F3b) fo all x, a M hee exiss z M such ha xz a M (μ(a), μ(x), 0.5) μ(z). Poof. I is simila o he poof of Lemma 5.3. Lemma 5.5. Le μ F(M) α Γ. Then (F4a) holds if onl if one of he following condiions holds: x implies x1 q q (F4b) (esp., x 1 ) fo all x,, z M (0, 1]. (z) M( (),0.5) (z) M( (x),0.5)) z z (F4c) (esp., fo all x, M α Γ. Poof. The poof is simila o he poof of Lemma 5.2. Le μ be a fuzz subse (0, 1]. Then he se [ ] {x R x q } is called he q-level subse of μ. The nex heoem povides he elaionship beween (, q)-fuzz lef (esp., igh) v-submodules of Γ v-module cisp lef (esp., igh) v-submodules of Γ v-module. F(M). Theoem 5.6. Le Then (1) μ is an (, q) ( ) -fuzz lef (esp., igh) v-submodule of M if onl if is a lef (esp., igh) vsubmodule of M fo all (0,0.5]. (2) μ is an (, q) -fuzz lef (esp., igh) v-ideal of R if onl if [ ] ([ ] ) is a lef (esp., igh) v-ideal of R fo all (0,1]. x Page 38

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] Poof. We onl show (2). Le μ be an (, q) -fuzz lef v-submodule of M x, [ ] fo some (0,1]. Then μ(x) o μ(x) > 1 μ() o μ() > 1. Since μ is an (, q) -fuzz lef v-submodule of M, we have μ(z) M(μ(x), μ(), 0.5) fo all z. We conside he following cases: (a) (0,0.5]. (b) (0.5,1]. Case a: Since (0,0.5]. We have 1 0.5 so μ(z) M(,, 0.5) = o μ(z) M(, 1, 0.5) = o μ(z) M(1, 1, 0.5) = 0.5 fo all z. ence z fo all z. Case b: Since (0.5,1]. We have 1 < 0.5 < so μ(z) M(,, 0.5) = 0.5 o μ(z) > M(, 1, 0.5) = 1 o μ(z) > M(1, 1, 0.5) = 1 fo all z. ence z q fo all z. Thus in an case, z [ ] fo all z.,z [ ] Similal we can show ha hee exis such ha x a xz a fo all x,a [ ] ha x [ ] fo all x M, [ ]. [ ] Theefoe, is a lef v-submodule of M. F(M) Convesel, le [ ] is a lef v-submodule of M fo all (0,1]. x, M. Le If hee exiss z M such ha μ(z) < = M(μ(x), μ(), 0.5), hen x, [ ] bu z [ ], a conadicion. Theefoe, μ(z) M(μ(x), μ(), 0.5) fo all z. Similal we can show ha hee exis,z M x a, x z a, such ha μ() M(μ(x), μ(a), 0.5) μ(z) M(μ(x), μ(a), 0.5) ha μ(xα) M(μ(), 0.5) fo all x, M. Theefoe, μ is an (, q) -fuzz lef v-submodule of M b Lemmas 5.2 5.5. The case fo (, q) -fuzz igh v-submodules of M can be similal poved. REFERENCES [1] F. Ma, Su une genealizaion de la noion de goupe, in: 8h Congess Mah. Scianaves, Sockholm, 1934, pp. 45 49. [2] P. Cosini, Polegomena of pegoup Theo, second ed., Aviani Edio, 1993. [3] P. Cosini, V. Leoeanu, Applicaions of pesucue Theo, in: Advances in Mahemaics (Dodech), Kluwe Academic Publishes, Dodech,2003. [4] T. Vougiouklis, The fundamenal elaion in hpeings. The geneal hpefield, in: Poc. 4 h Inenaional Congess on Algebaic pesucues Applicaions, Xanhi, 1990, Wold Sci. Publishing, Teaneck, NJ, (1991), 203-211. [5] B. Davvaz, A bief suve of he heo of v-sucues, in: Poc. 8h In. Congess AA, Geece Spanids Pess, 2003, pp. 39 70. [6] L. A. Zadeh, Fuzz ses, Infom. Conol, 8 (1965), 338-353. [7] A. Rosenfeld, Fuzz goups, J. Mah. Anal. Appl. 35 (1971) 512 517. [8] W.J. Liu, Fuzz invaian subgoups fuzz ideals, Fuzz Ses Ssems 8 (1982) 133 139. [9] S.K. Bhaka, (, q) -fuzz nomal, quasinomal maximal subgoups, Fuzz Ses Ssems 112 (2000) 299 312. [10] S.K. Bhaka, P. Das, (, q) -fuzz subgoups, Fuzz Ses Ssems 80 (1996) 359 368. [11] S.K. Bhaka, P. Das, Fuzz subings ideals edefined, Fuzz Ses Ssems 81 (1996) 383 393., q [12] B. Davvaz, -fuzz subnea-ings ideals, Sof Compuing, 10 (2006), 206-211. [13] B. Davvaz, Fuzz v -goups, Fuzz Ses Ssems, 101 (1999), 191-195. [14] B. Davvaz, Fuzz v -submodules, Fuzz Ses Ssems, 117 (2001), 477-484. [15] B. Davvaz, On v -ings fuzz v -ideals, J. Fuzz Mah., 6 (1998), 33-42. [16] B. Davvaz, T-fuzz v -subings of an v-ing, J. Fuzz Mah., 11 (2003), 215-224. [17] B. Davvaz, Poduc of fuzz v -ideals in v -ings, Koean J. Compu. Appl. Mah., 8 (2001), 685-693. [18] B. Davvaz, P. Cosini, Genealized fuzz sub-hpequasigoups of hpequasigoups, Sof Compu. 10 (11) (2006) 1109 1114. [19] B. Davvaz, P. Cosini, Genealized fuzz hpeideals of hpenea-ings man valued implicaions, J. Inell. Fuzz Ss. 17 (3) (2006) 241 251. [20] B. Davvaz, P. Cosini, On (α, β)-fuzz v-ideals of v -ings, Ian. J. Fuzz Ss. 5 (2) (2008) 35 47. Page 39

Inenaional Jounal of Engineeing Reseach (IJOER) [Vol-1, Issue-1, Apil.- 2015] [21] B. Davvaz, J. Zhan, K.P. Shum, Genealized fuzz v-submodules endowed wih ineval valued membeship funcions, Infom. Sci. 178 (2008) 3147 3159. [22] O. Kazancı, B. Davvaz, Fuzz n-a polgoups elaed o fuzz poins, Compu. Mah. Appl. 58 (7) (2009) 1466 1474. [23] J. Zhan, B. Davvaz, K.P. Shum, A new view of fuzz hpequasigoups, J. Inell. Fuzz Ss. 20 (4 5) (2009) 147 157. [24] J. Zhan, B. Davvaz, K.P. Shum, A new view of fuzz hpenea-ings, Infom. Sci. 178 (2008) 425 438. [25] B.Davvaz, J.Zhan, Y.Yin, Fuzz v-ideals in Γ-v-ings, Compue Mahemaics wih Applicaions 61 (2011) 690-698. [26] B. Davvaz, W. A. Dudek, Inuiionisic fuzz v -ideals, Inenaional Jounal of mahemaics Mahemaical Sciences, (2006), pp- 1-11. [27] B. Davvaz, W. A. Dudek, Y. B. Jun, Inuiionisic fuzz v -submodules, Infom. Sci. 176 (2006) 285-300. [28] S. K. Bhaka, P. Das, On he definiion of a fuzz subgoup, Fuzz Ses Ssems, 51 (1992) 235-241. [29] W.E. Banes, On he Γ -ings of Nobusawa, Pacific J. Mah. 18 (1966) 411 422. [30] Y. Yin, X. uang, D. Xu, F. Li, The chaaceizaion of h-semisimple hemiings, In. J. Fuzz Ss. 11 (2009) 116 122. Page 40