Acta Mathematica et Informatica Universitatis Ostraviensis

Similar documents
Fuzzy and Non-deterministic Automata Ji Mo ko January 29, 1998 Abstract An existence of an isomorphism between a category of fuzzy automata and a cate

Acta Mathematica Universitatis Ostraviensis

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Acta Mathematica et Informatica Universitatis Ostraviensis

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

Archivum Mathematicum

Mathematica Bohemica

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Časopis pro pěstování matematiky

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Archivum Mathematicum

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Mathematica Bohemica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

Aplikace matematiky. Gene Howard Golub Least squares, singular values and matrix approximations. Terms of use:

Časopis pro pěstování matematiky

Acta Universitatis Carolinae. Mathematica et Physica

Czechoslovak Mathematical Journal

Tense Operators on Basic Algebras

On Monoids over which All Strongly Flat Right S-Acts Are Regular

Mathematica Bohemica

Course Summary Math 211

Czechoslovak Mathematical Journal

3.2 Modules of Fractions

On the filter theory of residuated lattices

A L A BA M A L A W R E V IE W

C -ALGEBRAS MATH SPRING 2015 PROBLEM SET #6

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

Časopis pro pěstování matematiky

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Course 224: Geometry - Continuity and Differentiability

Kybernetika. Harish C. Taneja; R. K. Tuteja Characterization of a quantitative-qualitative measure of inaccuracy

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring

1. Introduction and preliminaries

MV -ALGEBRAS ARE CATEGORICALLY EQUIVALENT TO A CLASS OF DRl 1(i) -SEMIGROUPS. (Received August 27, 1997)

Časopis pro pěstování matematiky

Archivum Mathematicum

P a g e 5 1 of R e p o r t P B 4 / 0 9

Fuzzy relation equations with dual composition

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

Mathematica Slovaca. Ján Borsík Products of simply continuous and quasicontinuous functions. Terms of use: Persistent URL:

University Libraries Carnegie Mellon University Pittsburgh PA ON COMPLETIONS OF UNIFORM LIMIT SPACES. Oswald Wyler.

MAXIMAL ORDERS IN COMPLETELY 0-SIMPLE SEMIGROUPS

languages by semifilter-congruences

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Topological dynamics: basic notions and examples

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica

Linear Differential Transformations of the Second Order

Metamorphosis of Fuzzy Regular Expressions to Fuzzy Automata using the Follow Automata

Czechoslovak Mathematical Journal

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

Časopis pro pěstování matematiky

VH-G(A)=IIVHGF(S)"J=1.

-170- for each pair (A,B) of objects a set. are called morphisms from A to B. [A,B] x [B,C] > [A,C] (a, 8) ~ ~a

Commentationes Mathematicae Universitatis Carolinae

LAWSON SEMILATTICES DO HAVE A PONTRYAGIN DUALITY. Karl Heinrich Hofmann and Michael Mislove. The category L of Lawson semilattices is the catewith

Časopis pro pěstování matematiky a fysiky

On the GIT moduli of semistable pairs consisting of a plane cubic curve and a line

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Acta Universitatis Carolinae. Mathematica et Physica

FUZZY HOMOMORPHISM AND FUZZY ISOMORPHISM

ON EXTENSION OF FUNCTORS ONTO THE KLEISLI CATEGORY OF THE INCLUSION HYPERSPACE MONAD. Andrii Teleiko

WSGP 9. Peter W. Michor Knit products of graded Lie algebras and groups. Terms of use:

Czechoslovak Mathematical Journal

COMPACT SPACES AND SPACES OF MAXIMAL COMPLETE SUBGRAPHS

The applications of the universal morphisms of LF-TOP the category of all fuzzy topological spaces

Foundations of mathematics. 5. Galois connections

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

A NOTE ON ORDER CONVERGENCE IN COMPLETE LATTICES

Archivum Mathematicum

Fuzzy Function: Theoretical and Practical Point of View

EQUADIFF 6. Jean-Claude Nédélec Mixed finite element in 3D in H(div) and H(curl) Terms of use:

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

A Family of Finite De Morgan Algebras

arxiv:math/ v2 [math.ra] 14 Dec 2005

Functions of Several Variables (Rudin)

Commentationes Mathematicae Universitatis Carolinae

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

Math-Net.Ru All Russian mathematical portal

ON FUZZY TOPOLOGICAL GROUPS AND FUZZY CONTINUOUS FUNCTIONS

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), ISSN

Czechoslovak Mathematical Journal

Weighted automata coalgebraically

Toposym 2. Miroslav Katětov Convergence structures. Terms of use:

arxiv: v1 [math-ph] 23 Jul 2010

Transcription:

Acta Mathematica et Informatica Universitatis Ostraviensis Jiří Močkoř; Renata Smolíková Category of extended fuzzy automata Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 4 (1996), No. 1, 47--56 Persistent URL: http://dml.cz/dmlcz/120504 Terms of use: University of Ostrava, 1996 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Acta Mathematica et Informatica Universitatis Ostraviensis 4(1996)47-56 47 Category of extended fuzzy automata JIŘÍ MOČKOŘ, RENATA SMOLÍKOVÁ Abstract. An extended fuzzy automaton is introduced as a fuzzy automaton, where sets of states and inputs, respectively, are the sets of all fuzzy subsets F(S) and F(A), respectively, for some finite sets S and A. A category of these extended fuzzy automata is introduced and a functor between this category and a category of fuzzy automata is investigated. A relationship between output functions of fuzzy automaton and extended fuzzy automaton are derived. 1991 Mathematics Subject Classification: 68Q70 1 Introduction In papers [2],[3] and [4] we investigated some properties of a category of automata and its generalization a category of fuzzy automata. We also derived some functors between these categories which enable us to approximate the behaviour of a fuzzy automaton by an appropriate classical automaton. Namely, if A (5, A, F, p, G) is a fuzzy automaton with a set of states 5, an input alphabet A, a transition function F C S x A x 5, an initial fuzzy state p C S and final fuzzy state G C S and if fa is its output function (i.e. fa is a fuzzy set in a free monoid A* such that fa = p o F* (A) o G) then for any positive real number e < 1 there exists a classical Moore automaton B over the same input alphabet A with an output function <7g such that (VA A)/ A (A)>e^«, B (A) = l. In this paper we deal with some special kind of fuzzy automaton. We introduce the so called extended fuzzy automaton which is a fuzzy automaton where sets of states and inputs, respectively, are the sets of all fuzzy subsets F(S) and F(A), respectively, for some finite sets S and A. We define a category of these extended fuzzy automata and we prove that there exists a functor M from a category of fuzzy automaton into a category of this extended fuzzy automaton. By using this functor we show that there exists some relationship between output function fa of a fuzzy automaton A and the output function / M (A) ^ a corresponding extended fuzzy automaton M(A). Moreover,we prove that an analogy of the above mentioned approximation theorem can be derived for extended fuzzy automata as well. We recall firstly some basic properties of fuzzy automaton and their category.

48 J.Močkoř, R.Smolíková Definition 1.1 (see [2]) A (Moore) type of fuzzy automaton is a system A = (S, A, p, F, G) where S is a set of states, A is a set of inputs, p C S is a fuzzy set called a fuzzy initial state, F : S x A x S > [0, 1] is a fuzzy transition function i. e. F(A) C S x S, G C S is a fuzzy set called a fuzzy final state. If S and A are finite then A is called a finite fuzzy automaton. If we denote by A* the free monoid generated by A then F can be extended to a fuzzy transition function F* : S x A* x S - [0, 1]. A principal identification of a fuzzy automaton is provided by its output function f A : A* -> [0, 1] such that for A = A x A 2... A n E A* / A (A)=poF*(A)oG= \/(\/(p(z)af*(\)(z,s))ag(s)). ses zes Recall that by a category < we understand a category of Moore type automata (see [2]), the objects of which are finite automata B = (S,A,p,d,G) and morphisms from (Siy Ai,pi,d x,gi) to (S 2, A 2,p 2, d 2, G 2 ) are pairs (a, ft), where a : Si -> S 2, /3 : Ai > A 2 are maps such that 1. a(pi) = p 2, 2. cv(gi) C G 2, 3. a(d 1 (s,\))=d 2 (a(s),(3(\)) for any s G 5, A <E A. Any Moore type automaton B provides an output function gg : A* > {0, 1} such that for A = Ai... A n E A* g B (A) = l iff c1*(p,a):=jk(p,ai...an-i),a n )EG where d* is an extension of a function d onto A*. A category of fuzzy automata was introduced in [2], the objects of which are fuzzy automata and morphisms are defined as follows. We recall the following definitions. Definition 1.2 (see [2]) Let A and B be sets and f and g be fuzzy sets in A and B, respectively. Then for a map v : A > B the following diagram A -A B > I 1, [0,1] = [0,1] is said to fuzzy commutes if (VaєЛ) f(a) < g-v(a) (1) (VЬЄv(A)) g(b) < V f(a) (2) v(a) b

Category of extended fuzzy automata 49 Definition 1.3 (see [2]) Let A,- = (Si, A,-, p {, F,, G,-) be fin general nonfinite) fuzzy automata for i = 1, 2. Then a couple (a, /?) : Ai y A 2 is called a fuzzy morphism if a : S\ > 1S2, /? : Ai ~> A2 are maps sucft fta: lfte following diagrams fuzzy commute. I Sг - ->.S'2 1 P2 [0,1] = = [0,1] si -->.52 <* G 2 [0,1] = = [0,1] o A c> axßxa Г1. S\ x Лi x 61 y S 2 x Л 2 x 5 2 M I / [0,1] = [0,1 Let ^ be a category of (in general nonfinite) fuzzy automata with morphisms defined above. By ^c we denote a subcategory of ^ the objects of which are finite fuzzy automata and a morphism between two fuzzy automata is a pair of functions (a,/?) such that the above mentioned diagrammes commute (and not only fuzzy commute). 2 Category of extended fuzzy automata An extended fuzzy automaton is a fuzzy automaton where a set of states is the set F(S) of all fuzzy sets over some finite set S and a set of inputs is the set F(A) of all fuzzy sets over some finite set A. It means that extended fuzzy automata are some special objects of a category ^. The full subcategory of these objects will be denoted by ty e C *V It is a natural question if from any finite fuzzy automaton from ^ can be constructed an extended fuzzy automaton and, moreover, whether this construction M : Ob(ty c ) > Ob(^e) (which will be called an extension function) is a functor ^c -> tf e. We will use the following notation. Let / : X\ x... x X n ;y Y be a function. By / we denote a function F(Ni) x... x F(X n ) y F(Y) obtained by using the extension principle applied on /. An extension function is then any function M : Ob(ty c ) y Ob(^e) such that M(S, A,p, F, G) = (F(S), F(A), M(p),M(F),M(G))

50 J. Mockof, R. Smolikova where M(p) C F(S r ), M(F) C F(5) x F(A) x F(5 r ) and M(G) C F(S). We present firstly an example of this extension function. Let S and A be finite sets and let p C 5, G C 5, FCSxAx S, u C A and 8 G [0, 1]. Example. We define M(p),M(G) and M(F) such that M(p)(T):= V T (' s ) ' TGF(5) p(*)>a M(G)(T) := \/ T(.s), TeF(S) s S G(s)>S M(F)(T,A,T'):= V (T(s)AA(X)AT f (s f )), (S,X,»') SXAXS F(s,A,s')><5 T^G F(S),AeF(A). Moreover, if u : A -> [0, 1] is a map then M(H) : F(A) -> [0, 1] is defined such that M(u)(A):= \/ A(A), A F(A). A A n(a)><5 Theorem 2.1 Tbe extension function M from the Example is a functor M : ^c -> ^f 6} where for a morphism (a,(3) : Ai -> A 2 in ^c, M(a,/3) (a,j3). PROOF: Let (a,/?) : Ai > A 2 be a morphism in ^c. At first, we have to prove that the following diagram fuzzy commutes. F(Ą) -±> F(S 2 ) M Ы M( P2 ) [0,1] = [0,1] M( Pl )(T) < M( P2 )-á(t) (3) M( P2 )(T') < V M (Pi)CO ( 4 ) &(T)=T' We have M( P i)(t)= V T(.< «1 l S, pi(si)>á

Category of extended fuzzy automata 51 Then M( P2 )(a(t)) = V a(t)(s 2 ) > a(t)(a(s,)) > T( Sl )»2 S2 p2(s2)><5 for any element S\ E Si such that pi(si) > S. In the last inequality we use the fact that for morphisms in a category ^c we have Pi(si) = P2(»(si)). Then M (P2)(Õ(T))> \/ T(si) = M(pi)(T) pi(si)><5 and the inequality (3) holds. Let V E F(S 2 ) and a(t) = T' for some T E F(S'i). Then there exists 4 E S 2 such that p 2 (s 2 ) > S and Since it follows that Hence, M( P2 )(T')= \/ T( S2 ) = T'(. S 0) = a(t)(.s 2 )= \/ T(si). «2es2 p 2(5 2)><5 M6S1 «(si) = s5 {si G 5i,o(si) = s 2 } C {si 5i,pi(.si) > J} M(p,)(T)= V T(s x )> V T(. Sl ) = M(p 2 )(T'). si Si si Si Pi(si)><5 a(si) = s M(pi)(T) > M( P2 )(T') and the inequality (4) holds. Analogously we can prove that the following diagram fuzzy commutes. F(5i) A F(S 2 ) M (Gi) J J M(G 2 ) [0,1] = [0,1] Finally, we prove that the following diagram fuzzy commutes. F(5i) x F(Ai) x F(5i) &^T F(5 2 ) x F(A 2 ) x F(S 2 ) M(Fi) J \M(F 2 ) [0,1] = [0,1]

52 J. Močkoř, R. Smolíková M{F X )(T X,A X,T[) < M{F 2 )-{axpxa){t x,a x,t[) (5) M(E 2 )(T 2)2 4 2) T 2 ) < V M{F X ){T X,A X,T[) (6) In fact, we have (ax0xa)(t u A u T' l ) = (T- 2) A 2,T' 2 ) M{F X ){T,A,T')= V/ (T{s 1 )AA{X x )AT'{s' 1 )). (s 1> X 1> s' l )es 1 XA 1 XS 1 FxisuX^s'^S Then M{F 2 )(a{t)j{a),a{t')) = V (a{t){s 2 )A0{A){\ 2 )Aa{T'){s' 2 ))> (s 2^2^2)6S 2 XA 2 XS2 F 2 (s 2,X 2,s' 2 )>6 > a(t)(a( Sl )) A P(A)(p(\y)) A a(t')(a(s[)) > T(s x ) A A(\,) A T'(s[) for any (BijAi,^) E 5'I X AI X SI such that Fi(si, Ai, s[) > 8. In the last inequality we use again the fact that for morphisms in category ^c we hwef x {s x,\ x,s' 1 ) = F 2 {a{s 1 ),f3{\ x ),a{s' 1 )). Then M{F 2 ){ã{t),ß{a),ă{t'))> V/ (T(5 І )ЛІ.(À 1 )ЛҐ(ÍІ)) ( l.^ľ^єslxл^xsi -Fi(*i,Ai,*í)>a = M(Fi)(T,A,T') and (5) holds. Finally, let (a x (3 x a) (T u A u T{) = (T 2, Al 2, V 2 ). Since S 2, A 2 are finite, then there exists (*,A,s ') G 5 2 x A 2 x 5 2 such that F 2 (^,A,^') > (5 and M(F 2 )(T 2,A 2,T^)= \/ (T 2 (, 2 )AA 2 (A 2 )AT / (B / 2)) = (»2,A2.»^) S2XA2XS2 F 2 (s 2,A 2,4)>i = T 2 {s 2 ) A A 2 (A ) A T^( S ') = a{t x ){s 2 ) A 3(-4i)(A ) A a{t[){s 2 ) = V ( l.^l.^esixaixs! «( S1 )= S? 2 m^jaa^aoa^k)).

Category of extended fuzzy automata 53 Since {(.,Ai,«i) G s, xa,x 5 x,a(«i) = ^.fla,) = X 2,a(s[) = s '} C we have _ {(., A,, «',) G 5i x A! x ft, Fi(*,, A,, *'.) > 6} M(F 1 )(T 1,A 1,T 1 ')= V/ (T^sOA^^AOATi'K))^ (M> M.«i)eSiXAiXSj > \/ (T 1 (Bi)AA 1 (Ai)AT 1, (B, 1))-M(F 2 )(T 2,/_ 2,T^) (»l,a1,«l 1) S1XA1X-i «(*l) = 'S. (Ai)=A "IV 2 and it follows that M(Fi)(Ti,Ai,T{) > M(F 2 )(T 2, 2,T.0 for any (T u A U T{) 6 F(5i) x F(A X ) x F(S'i) such that (ax/5 xa)(ti,y_i,t{)=:(t 2, 2,T^. Hence, V Fi(Ti,.Ai,7^)>_? 2 (T 2,_l 2,^) (ax/3x«)(t 1) i 1,T 1 ')-(T 2) i 2,^) and the inequality (8) holds. Hence, (a, /?) : M(Ai) > M(A 2 ) is the morphism in ^e and M is a functor (as it may be proved easily too). D Now we will study an output function of an extended fuzzy automaton. Let M : c > ^ e be a functor which is constructed from some extended function M:06(tf c ) -. 06(_I e ). For any fuzzy automaton A E \_" c we then have an output function of an extended fuzzy automaton M(A) Moreover, by using some construction of a function M{u) : F(A) > [0,1] from a function u : A > [0,1] (see Example) we obtain another output function M(f A /A) : F(A). [0, 1] where f A : A* -> [0, 1] is an output function of a fuzzy automaton A. In the following proposition we show some relationship between functions M(/ A /A) and f M(A) /F(A). Theorem 2.2 Lel M be a functor from Theorem 2.1. Then (fm(a)/fw)(a) > M(f A /A)(A) for any A G _ (A).

54 J. Mockof, R. Smolikova PROOF: For simplicity we set h A : = /A/ A ' h M(A) : = /M(A)/ F ( A )- Let A 0 G A be such that M(h A )(A) = V A(X) = A(X 0 ) where h A (X 0 ) = p(z 0 ) A F(z 0, X 0, s 0 ) A G(s 0 ) > <$. Then h A (\)>5 V(A)(^) = M (P) M(F)(A) o M(G) = = V/ ( V (M(p)(T')AM(F)(A)(T',T))AM(G)(T)) = TeF(S) T'eF(S) = V ( V ( V T V) A V (T'(s")AA(X)AT( s '")))A TeF(S) T' F(S) p(s')>6 F(s",X,s'")>6 A V T (s)))> V {^}(s')a V ({zo}(s")aa(x)a{s 0 }(s'"))a G(s)>6 P(s')>6 F(s",X,s'")>6 A V { s o}(s)>{zo}(zo)a{zo}(zo)aa(xo)a{so}(so)a{s 0 }(so) = A(Xo) G(s)>6 Then V(A)(^)> V A(X) = M(h A )(A) \ A /> A (A)><5 in [2] it was proved that there exists a functor F t : ^c > $ which transforms any finite fuzzy automaton onto a finite automaton (with required precision e > 0). In the following theorem we prove an analogical result for the category ^ of (in general nonfinite) fuzzy automata. In this case the resulting functor is H t from ^ into a category <I> n of (in general nonfinite) classical Moore automata. Theorem 2.3 Let e > 0. Then there exists a functor H = H t : ^ > <I> n swcb llial for every fuzzy automaton A ^ and every word X E A* ; / A (A) >e <» %e{a) (A) = 1. PROOF: Let A = (5, A,p, F, G) G *. We set H t (A) = (2 s,a, Pt,d t,g t ), where 2 s is the set of all subsets of S, p t = {s S,p(s) > e} 2 5, Ge = {X CS:3x X, G(x) > e} C 2 5 and J e : 2 5 x A -» 2 5 is defined such that d t (X, X) = {s E S : 3x E K, F(ar, A, s) > e} 2 s.

Category of extended fuzzy automata 55 Then if (a,/?) : Ai r A 2 is a morphism in $ then H e (a,fi) = (u,v) : H e (A\) -> H e (A 2 ) is defined such that u(x) :=a(x) C5 2, v :=/?. We can prove that (u, v) is a morphism in < n, i. e. 1. u(pi, e ) =p 2 Cl 2. ii(gi, e ) C G 2, e, 3. a(ji )e (K,A)) = c1 2) (a(x),/?(a)). Let,s G w(pi, e ) = a(pi, e ) = {<*(«) : 5 G 5 2,pi(.s) > e}. Then e < p^b) < p 2 (a(«)), i.e. a(;s) Gp 2,e and u(pi, e ) C (p 2?e ). Now let,s G p 2, e. Then e < p 2 (s) < \/ Pi(l) holds. Then there exists t G 5i a(t) = s such that a(t) = s,pi(t) > e. Then t G Pi, e and s = a(t) G a(pi,e)- Hence p 2>e C a(p 1) ) = u(pi )6 ) and (1) holds. Let T G w(gi, e ) = MK),K C 5i : 3x G X,Gi(x) > e}. Then exists t G T such that e < Gi(t) < G 2 (a(t)) and a(t) = u(t) G G 2, e, i.e. (2) holds. Finally, let s G a(d 1)e (K, A)) = {a(s),s G 5 X : 3x G K, Fi(x, A,.s) > e}. Then e < Fi (x, A, ;s) < F 2 (a(x), /?(A), a(*)), i. e. a(s) G d 2>c (a(x), 0(A)) and a(d 1>e (X, A)) C J 2)e (a(k),/5(a)). Now let ;s G J 2, e (a(k),/?(a)). Then e<f 2 (x',a',;s')< \/ F l (x,\,s). (cvx/jxo;)(a7,a,5) = (a7 / )A /,5 / ) Then exists (x, A,,s) G 5i x Ai x 5i such that (a x /? x a)(x, A, s) = (x', A',.s') and Fi(x,A,s,) > e. Then.s G Ji, e (K, A) and hence a(.s) G a(j 1)C (K, A)). Then d 2, e (a(x),{3(\)) C a(d 1)e (K,A)) and (3) holds. Hence, H e is a functor (as it may be proved easily too). Now let J e (A,p e ) G G e, i.e. g H sj±\(\) = V Hence there exists 5 G <1 e (A,p e ) such that G(s) > e and an x G 5 such that p(x) > e and F(x, \,s) > e. Thus, IA( A ) = V( V (P(*) A %A,«))AGW) > * The converse implication can be proved analogously. References [1] Mizumoto, M., Toyoda, J., Tanaka, K., Some considerations on fuzzy automata, J. Computer and System Sciences 8 (1969), 409-422. [2] Mockof, J., Some categorical aspects of fuzzy automata, Int. J. General Systems 20 (1991), 73-82.

56 J. Močkoř, R. Smolíková [3] Močkoř, J,, Smolíková, R., Output functions of fuzzy automata, Acta Math, et Inf. Univ. Ostraviensis 3 (1995), 55-59. [4] Močkoř, J., Smolíková, R., Fuzzy Automata, in print for Tatra Mountains Math.PubL,. [5] Novák, V., Fuzzy sets and their applications, A. Hilger, Bristol, 1989. [6] Santos, E.S., Maximin automata, Inf. Control 13 (1968), 36.3-377. [7] Wee, W. G., Fu, K. S., A formulation of fuzzy automata and its application as a model of learning system, IEEE Trans. System Science and Cyb. 3 (1969), 215-223. Address: Department of Mathematics, University of Ostrava, 701 03 Ostrava 1, Bráfova 7, Czech Republic