DRAFT COPY. Leicester, U.K. Experimental Competition

Similar documents
PLANCK S CONSTANT IN THE LIGHT OF AN INCANDESCENT LAMP

30th International Physics Olympiad. Padua, Italy. Experimental competition

Padua, Italy. Theoretical competition

Theoretical Competition

EXPERIMENTAL COMPETITION

Experiment 4: Resistances in Circuits

Modern Physics Laboratory MP2 Blackbody Radiation

PHYSICS EXTENDED ESSAY

Electrical Circuits Question Paper 1

EXPERIMENT NO. 4. Thermal Radiation: the Stefan-Boltzmann Law

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

THERMAL RADIATION. The electromagnetic radiation emitted by a hot tungsten filament will be studied.

THEORETICAL COMPETITION

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education PHYSICS Paper /03

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

Blackbody Radiation EX-9920 ScienceWorkshop Page 1 of 8. Blackbody Radiation

Instructor Resources

EE301 RESISTANCE AND OHM S LAW

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Name Date Time to Complete

Electrical Circuits Question Paper 4

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Solar cells E Introduction. Equipment used for this experiment is displayed in Fig. 2.1.

The Stefan-Boltzmann Law

The Digital Multimeter (DMM)

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

Experiment 4 Radiation in the Visible Spectrum

Exp. P-6 Blackbody Radiation

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Current Electricity. ScienceLinks 9, Unit 4 SciencePower 9, Unit 3

EXAMINATION QUESTIONS (6)

Lab VI Light Emitting Diodes ECE 476

Electrical Circuits Question Paper 8

Paper Reference. Paper Reference(s) 6732/01 Edexcel GCE Physics Advanced Subsidiary Unit Test PHY2

PhysicsAndMathsTutor.com

where c m s (1)

Measurement of Electrical Resistance and Ohm s Law

Physics Assessment Unit A2 3B

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Astronomy 101 Lab: Spectra

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Higher -o-o-o- Past Paper questions o-o-o- 3.3 Photoelectric

Chapter 1. Blackbody Radiation. Theory

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

EXPERIMENT 17: Atomic Emission

Measuring Planck s Constant By Martin Hackworth

IGCSE Sample Examination Paper

LAB I WHAT IS IN IT AND WHY?

Laboratory Worksheet Experiment NE04 - RC Circuit Department of Physics The University of Hong Kong. Name: Student ID: Date:

The Quantum Model of the Hydrogen Atom

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYS 2212L - Principles of Physics Laboratory II

Answer three questions from Section A and five questions from Section B.

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Electricity. Questions and Solutions. James Page Arthur Baillie [HIGHER]

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

Additional Science. Physics PH2FP. (Jun15PH2FP01) General Certificate of Secondary Education Foundation Tier June 2015.

Lab 6. RC Circuits. Switch R 5 V. ower upply. Voltmete. Capacitor. Goals. Introduction

A Level Physics B (Advancing Physics) H557/03 Practical skills in physics

PHYSICS 116 SPECTROSCOPY: DETERMINATION OF THE WAVELENGTH OF LIGHT

Lab 10: DC RC circuits

high energy state for the electron in the atom low energy state for the electron in the atom

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYA1. General Certificate of Education Advanced Subsidiary Examination June Particles, Quantum Phenomena and Electricity (JUN10PHAY101 TOTAL

Energy and the Electron: Atomic View and Argumentation. b. Draw what you think an atom looks like. Label the different parts of the atom.

Farr High School HIGHER PHYSICS. Unit 3 Electricity. Question Booklet

AP Physics C: Electricity and Magnetism

AP Physics 2: Algebra-Based

Cambridge International Examinations Cambridge Ordinary Level

Figure 1: Capacitor circuit

The child becomes electrically charged when he goes down the slide

Photoelectric Effect

Atomic Spectra & Electron Energy Levels

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction.

Candidate Number. Other Names These questions relate to your investigation of

Switch + R. ower upply. Voltmete. Capacitor. Goals. Introduction

Length & Time Question Paper 2

Engage Education Foundation

Voltage Dividers, Nodal, and Mesh Analysis

ERRATUM NOTICE ERRATUM NOTICE

THIS IS A NEW SPECIFICATION

Physics 17 Spring 2003 The Stefan-Boltzmann Law

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

Lab E3: The Wheatstone Bridge

Physics 1CL OPTICAL SPECTROSCOPY Spring 2009

Atomic Emission Spectra


PHA3/W PHYSICS (SPECIFICATION A) Unit 3 Current Electricity and Elastic Properties of Solids

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

Experiment 2 Deflection of Electrons

Physics 208 Final Exam December 15, 2008

Transcription:

1 of 5 07/06/2017, 21:41 DRAFT COPY 31 st International Physics Olympiad Leicester, U.K. Experimental Competition Wednesday, July 12 th, 2000 Please read this first: 1. The time available is 2 ½ hours for each of the 2 experimental questions. Answers for your first question will be collected after 2 ½ hours. 2. Use only the pen issued in your back pack. 3. Use only the front side of the sheets of paper provided. Do not use the side marked with a cross. 4. Each question should be answered on separate sheets of paper. 5. For each question, in addition to the blank writing sheets where you may write, there is an answer sheet where you must summarise the results you have obtained. Numerical results should be written with as many digits as are appropriate to the given data. Do not forget to state the units 6. Write on the blank sheets of paper the results of all your measurements and whatever else you consider is required for the solution of the question and that you wish to be marked. However you should use mainly equations, numbers, symbols, graphs and diagrams. Please use as little text as possible. 7. It is absolutely essential that you enter in the boxes at the top of each sheet of paper used your Country and your student number (Student No.). In addition, on the blank sheets of paper used for each question, you should enter the number of the question (Question No.), the progressive number of each sheet (Page No.) and the total number of blank sheets that you have used and wish to be marked for each question (Total No. of pages). It is also helpful to write the question number and the section label of the part you are answering at the beginning of each sheet of writing paper. If you use some blank sheets of paper for notes that you do not wish to be marked, put a large cross through the whole sheet and do not include it in your numbering. 8. When you have finished, arrange all sheets in proper order (for each question put answer sheets first, then used sheets in order, followed by the sheets you do not wish to be marked. Put unused sheets and the printed question at the bottom). Place the papers for each question inside the envelope labelled with the appropriate question number, and leave everything on your desk. You are not allowed to take any sheets of paper out of the room. CDROM SPECTROMETER In this experiment, you are NOT expected to indicate uncertainties in your measurements. The aim is to produce a graph showing how the conductance* of a light-dependent resistor (LDR) varies with wavelength across the visible spectrum. *conductance G = 1/resistance (units: siemens, 1 S = 1 W -1 ) There are five parts to this experiment: Using a concave reflection grating (made from a strip of CDROM) to produce a focused first order spectrum of the light from bulb A (12 V 50W tungsten filament). Measuring and plotting the conductance of the LDR against wavelength as it is scanned through this first order spectrum.

2 of 5 07/06/2017, 21:41 Showing that the filament in bulb A behaves approximately as an ideal black body. Finding the temperature of the filament in bulb A when it is connected to the 12 V supply. Correcting the graph of conductance against wavelength to take account of the energy distribution within the spectrum of light emitted by bulb A. Precautions Procedure Beware of hot surfaces. Bulb B should not be connected to any potential difference greater than 2.0 V. Do not use the multimeter on its resistance settings in any live circuit. (a) The apparatus shown in Figure 1 has been set up so that light from bulb A falls normally on the curved grating and the LDR has been positioned in the focused first order spectrum. Move the LDR through this first-order spectrum and observe how its resistance (measured by multimeter X) changes with position. (b) (i) Measure and record the resistance R of the LDR at different positions within this first-order spectrum. Record your data in the blank table provided. (ii) Plot a graph of the conductance G of the LDR against wavelength l using the graph paper provided. Note The angle q between the direction of light of wavelength l in the first-order spectrum and that of the white light reflected from the grating (see Figure 1) is given by: sin q = l /d where d is the separation of lines in the grating. The grating has 620 lines per mm. The graph plotted in (b)(ii) does not represent the sensitivity of the LDR to different wavelengths correctly as the emission characteristics of bulb A have not been taken into account. These characteristics are investigated in parts (c) and (d) leading to a corrected curve plotted in part (e). Note for part (c) that three multimeters are connected as ammeters. These should NOT be adjusted or moved. Use the fourth multimeter (labelled X) for all voltage measurements. (c) If the filament of a 50 W bulb acts as a black-body radiator it can be shown that the potential difference V across it should be related to the current I through it by the expression: V 3 = CI 5 where C is a constant. Measure corresponding values of V and I for bulb A (in the can). The ammeter is already connected and should not be adjusted. (i) Record your data and any calculated values in the table provided on the answer sheet. (ii) Plot a suitable graph to show that the filament acts as a black-body radiator on the graph paper provided. (d) To correct the graph in (b)(ii) we need to know the working temperature of the tungsten filament in bulb A. This can be found from the variation of filament resistance with temperature. You are provided with a graph of tungsten resistivity (m W cm) against temperature (K). If the resistance of the filament in bulb A can be found at a known temperature then its temperature when run from the 12 V supply can be found from its resistance at that operating potential difference. Unfortunately its resistance at room temperature is too small to be measured accurately with this apparatus. However, you are provided with a second smaller bulb, C, which has a larger, measurable resistance at room temperature. Bulb C can be used as an intermediary by following the procedure described below. You are also provided with a second 12V 50W bulb (B) identical to bulb A. Bulbs B and C are mounted on the board provided and connected as shown in Figure 2. (i) Measure the resistance of bulb C when it is unlit at room temperature (use multimeter X, and take room temperature to be 300 K). Record this resistance R C1 on the answer sheet. i. Use the circuit shown in Figure 2 to compare the filaments of bulbs B and C. Use the variable resistor to vary the current through bulb C until you can see that overlapping filaments are at the same temperature. If the small filament is cooler than the larger one it appears as a thin black loop. Measure the resistances of bulbs B and C when this condition has been reached and record their values, R C2 and R B, on the answer sheet. Remember, the ammeters are already connected.

3 of 5 07/06/2017, 21:41 (iii) Use the graph of resistivity against temperature (supplied) to work out the temperature of the filaments of B and C when they are matched. Record this temperature, T 2V, on the answer sheet. (iv) Measure the resistance of the filament in bulb A (in the can) when it is connected to the 12 V a.c. supply. Once again the ammeter is already connected and should not be adjusted. Record this value, R 12V on the answer sheet. (v) Use the values for the resistance of bulb A at 2 V and 12 V and its temperature at 2 V to work out its temperature when run from the 12 V supply. Record this temperature, T 12V in the table on the answer sheet. You are provided with graphs that give the relative intensity of radiation from a black-body radiator (Planck curves) at 2000 K, 2250 K, 2500 K, 2750 K, 3000 K and 3250 K. (e) Use these graphs and the result from (d)(v) to plot a corrected graph of LDR conductance (arbitrary units) versus wavelength using the graph paper provided. Assume that the conductance of the LDR at any wavelength is directly proportional to the intensity of radiation at that wavelength (This assumption is reasonable at the low intensities falling on the LDR in this experiment). Assume also that the grating diffracts light equally to all parts of the first order spectrum.. Figure 1 - Experimental arrangement for (a) Figure 1: Detail - the grating: Figure 1: Detail - LDR and Multimeter: Figure 2

4 of 5 07/06/2017, 21:41 Note that this diagram does not show meters Graph 1 Graph 2a

5 of 5 07/06/2017, 21:41 Graph 2b