Chapter 14 Exercise 14A

Similar documents
1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

Physics 321 Solutions for Final Exam

B l 4 P A 1 DYNAMICS OF RECIPROCATING ENGINES

ME 236 Engineering Mechanics I Test #4 Solution

CHAPTER GAUSS'S LAW

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

CHAPTER 5: Circular Motion; Gravitation

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

A) N B) 0.0 N C) N D) N E) N

PHYS 705: Classical Mechanics. Central Force Problems I

Lecture 23: Central Force Motion

5.1 Moment of a Force Scalar Formation

which represents a straight line whose slope is C 1.

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Discretizing the 3-D Schrödinger equation for a Central Potential

JEE-Main. Practice Test-3 Solution. Physics

1. The Subterranean Brachistochrone

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Chapter 11 Exercise 11A. Exercise 11B. Q. 1. (i) = 2 rads (ii) = 5 rads (iii) 15 = 0.75 rads. Q. 1. T = mv2 r = 8(25) (iv) 11 = 0.

CHAPTER 24 GAUSS LAW

System of Particles: Center-of-Mass

Name Date. Trigonometric Functions of Any Angle For use with Exploration 5.3

Practice Integration Math 120 Calculus I Fall 2015

Practice Integration Math 120 Calculus I D Joyce, Fall 2013

16.3 Conservative Vector Fields

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7

LOWELL WEEKLY JOURNAL

Work, Energy, and Power. AP Physics C

Electromagnetic Waves

Exam 3, vers Physics Spring, 2003

Three-dimensional systems with spherical symmetry

LINEAR MOMENTUM Physical quantities that we have been using to characterize the motion of a particle

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Electric Charge. Electric charge is quantized. Electric charge is conserved

7.2.1 Basic relations for Torsion of Circular Members

Potential Energy and Conservation of Energy

Chapter 13: Gravitation

5. Differential Amplifiers

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Example

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms.

Previous Years Problems on System of Particles and Rotional Motion for NEET

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

RIGID BODIES - MOMENT OF INERTIA

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

Physics 201 Lecture 18

Calculus I Section 4.7. Optimization Equation. Math 151 November 29, 2008

FACTORS EFFECTING ELASTICITY

m1 m2 M 2 = M -1 L 3 T -2

ρ θ φ δ δ θ δ φ δ φ π δ φ π δ φ π

However, because the center-of-mass is at the co-ordinate origin, r1 and r2 are not independent, but are related by

KEPLER S LAWS AND PLANETARY ORBITS

CHAPTER 1. Learning Objectives

Electromagnetic Theory - J. R. Lucas

Chapter 4 Motion in Two and Three Dimensions

Physics 1501 Lecture 19

1121 T Question 1

Easy. r p 2 f : r p 2i. r p 1i. r p 1 f. m blood g kg. P8.2 (a) The momentum is p = mv, so v = p/m and the kinetic energy is

RAO IIT ACADEMY / NSEP Physics / Code : P 152 / Solutions NATIONAL STANDARD EXAMINATION IN PHYSICS SOLUTIONS

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

AMM PBL Members: Chin Guan Wei p Huang Pengfei p Lim Wilson p Yap Jun Da p Class: ME/MS803M/AM05

A) (0.46 î ) N B) (0.17 î ) N

NARAYANA IIT ACADEMY INDIA Sec: Sr. IIT-IZ-CO SPARK Jee-Advanced Date: Time: 09:00 AM to 12:00 Noon 2015_P1 Max.Marks:264

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

r ˆr F = Section 2: Newton s Law of Gravitation m 2 m 1 Consider two masses and, separated by distance Gravitational force on due to is

Equilibrium of Stress

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

INDUCTANCE Self Inductance

UGANDA ADVANCED CERTIFICATE OF EDUCATION INTERNAL MOCK 2016 PURE MATHEMATICS. 3 hours

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

Physics 2001 Problem Set 5 Solutions

PRACTICE PAPER 6 SOLUTIONS

10.2 Parametric Calculus

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

OSCILLATIONS. dt x = (1) Where = k m


Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Ch 13 Universal Gravitation

(Objective Questions)

AP Physics Kinematic Wrap Up

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

REVIEW Polar Coordinates and Equations

Chapter 8: Spherical Coordinates

Momentum and Collisions

PHYSICS. Time allowed: 90 minutes. Section A is a set of questions on data analysis. It requires work on graph paper.

ALL INDIA TEST SERIES

When a mass moves because of a force, we can define several types of problem.

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

MAS 315 Waves 1 of 8 Answers to Examples Sheet 1. To solve the three problems, we use the methods of 1.3 (with necessary changes in notation).

Housing Market Monitor

Transcription:

hapte 1 Eecise 1 Q. 1. d Q.. Mass d (i), d d di d I d I [ ] () 0 I 8 6 I (ii) k I QED k I O Q.. d d d d d I Mass ea p ( 1 ) 8p d d p d 8p d S, di d di d I 1 d [ ] 16 1 d 16 [ 81 1 ] I 5 QED Mass f annuus: d (i) di d, I d d d_ d d d [ ] d d[ d 8 + d 8 ] d d I d 1 (ii) k I d 1 k d QED d d d d d dd d d Q.. 6 d di d But d d 6 d I 5 d 6 [ 5 ] 18 d 18 [ 15 + ] 7 6 1

Q. 5. I _ d d d k [ ( ] ) ( ) ( ) k d d ( + ) QED Nting that ( )( + ) k d k _ d Q. 7. d nw di d I 0 d I () [ ] 0 y 8 I QED k I k Nting, hee ass Mass, 8 7y _ 8 p ( 9y y ) 8 p(8)y () py Q. 6. d d d annua ass p d y d d Nw di d Mass ea p( ) d d p( p d ) d I 7y y y d 7y (y ) [ ] y_ y [ y [ _,01 16 y y 16 ],00y 16 ] nw, by Definitin di d I 50y QED di _ ( ) d

Q. 8. p Q.. (i) p d d, d p d p d d d p p(d) _ d p nw di d I p d p Eecise 1B p p [ ] (p) p p [ p + p ] p QED (ii) d: I X : Disc: I : 1 aae es: (I X I + ) I X + () _ I X 19 I Tta I d + I Disc _ 19 + (57 + 8) 6 I 65 6 Q. 1. (i) I 1 ()() (ii) I ()() 1 (iii) I c + d + () 7 Q.. (a) (i) I 1 () 1 (ii) I B 1 ()() p c aae es: (I X I + ) Disc: I X + I X t Mass: I X () I X (iii) I I + I B (by pependicua ais thee) 5 (iv) I c + d 5 + () 17 (iii) I Tta + _ 11 B 6 B (b) Ony (iv) and by ()() 1

F ectange: d: I _ I : (), I BB () I X Syste: I Tta I d + I Laina ependicua es Thee: I X I + I BB I X 9 + _ 10 Q.. p _ 9 + 11 q c (iv) 6 d: ()() 16 t ass: 5 1 I X () 16 Disc: (I X I + ) Disc: I c + d 1 ()( ) + ()(5) 51 _ () + () 19 d: Q. 5. (i) Tta 5 1 + 51 56 1 B I X (6) (v) 8 I Tta 19 + 8 + 16 B By pependicua ais thee I + I B I (ii) But since I I B I 1 I I 1 ( 1 ) 1 (by syety) B Q. 6. Laina: I I BB es I I + I BB I es (I X I + ) I + () _ I X 9 Standad sitin gh 1 + 1 I w 1 gh + 1 I w g(1) + 1 I(0) g(0) + 1 I w I w g w g w g

Q. 7. (i) q d: I () 16 Disc: I I + d 1 + (51) 51 Tta 16 + 51 185 6 (ii) gh+ gh + 1 Iw gh + gh + 1 Iw d Disc Syste d Disc Syste g(7) + g(10) + 1 I(0) g() + g(0) + 1 Iw v w 5 168g 185 Q. 8. The ectangua aina: Iw 8g 185 6 w 8 g w 168g 185 Standad sitin B I 1 () I B 1 ( ) I I + I B I I + d 15 15 + ( ) 51 5

The pint ass: (6) 6 The syste 51 + 6 195 gh + gh + 1 Iw gh + gh + 1 Iw Laina int ass Syste Laina int ass Syste g (6) + g (6) + 1 (0) g() + g(0) + 1 Iw Iw 18g 195 w 18g w 7g 195 g 65 Speed f k w 6 g 65 6 k k k sitin 1 sitin Standad sitin Q.9. p y The d: The pint ass: The syste: I () I () I 8 gh + gh + 1 Iw gh + gh + 1 Iw d int ass Syste d int ass Syste ()g() + g( ) + 1 I ( g ) ()g + g(0) + 1 Iw 9g + g + 1 (8 ) ( g ) g + 1 (8 )w w 1g w 7g y sitin 1 sitin Standad y sitin Q. 10. (i) 6 Laina: Q I Q () I yy d: I () es: I O I + I Q 5 1 6

(ii) Then (I I O + ), ( es Thee) Syste: I 5 + (8) I 197 I Tta I d + I Laina 1 + 197 09 5 6 sitin 1 Eecise 1 Q. 1. 0 N 0 g adius sin 0 (i) Gain in K.E. Lss in.e. 1 v + 1 Iw gh F w v 1 v + 1 ( 1 ) ( v ) g(10 sin 0 ) 1 v + 1 v 60g v 60g v 80g v 80g 8 /s 5 Standad sitin sitin Enegy nseved: Q.. (i) (ii) v u + as a v u s 8 0 (10) v u + at t v a u 8 ( 0 9 15 ) N g cs q 9 15 60 7 s..e. 1 + K.E. 1.E. + K.E. g(11) + g(16) q F g(5) + g(0) + 1 Iw 5g 1 Iw But I 09 w 108g 09 w 108g 09 5 q g Gain in K.E. Lss in.e. 1 v + 1 Iw gh 1 v + 1 ( 1 ) ( v ) g(s sin q) 1 v + 1 v gs ( 5 ) utipy by 0 7

10v + 5v 1gs 15v 1gs v gs 5 v u + as gs 5 0 + as g 10a a 5 g (ii) On the pint f sipping g sin q F a Q.. Fces: g ( 5 ) g ( 5 ) ( g 1 QED 5 ) Q.. Lking at the fces n the ass: F a g T ( g 5 ) 10g 5T 8g 5T g q T 5 g N T g T T g (i) Gain in K.E. Lss in.e. 1 v + 1 Iw gs 1 v + 1 ( 1 ) ( v ) gs 1 v + 1 v gs v gs Fisty, we find the speed f the ass afte it has faen a distance h. Gain in K.E. Lss in.e. 1 v + 1 Iw gh ass disc ass 1 ()v + ( 1 1 ) ( v ) gh v + 1 v gh 5 v gh v 8gh 5 v u + as a v u s 8gh 5 0 h (ii) v u + as a v u s (iii) F a g T ( g ) g T g T g T 1 g Q. 5. (i) and 1 I 1 ( + 1) 5 v gs v gs _ gs 0 s g 5 g s 8

Fces: Q. 6. Fces: F 5 g T S esved: T S g g 5 F g g Gain in K.E. Lss in.e. 1 v + 1 Iw gh 1 v + ( 1 5 )( v ) g(s sin 5 ) 1 v + ( 1 5 )( v ) g ( s ) 16 utipy by 8v + 5v 16gs 1v 16gs v 16gs 1 v u + as 16gs a v u 1 0 s s 8g 1 /s (ii) F a ( assue annuus is n the pint f sipping) g ( g ) ( 8g 1 ) 1 utipy by g 1 1 8 1 5 5 1 This is the east vaue f that wi pevent sipping 5 1 Q. 7. (i) Gain in K.E. Lss in.e. 1 v + 1 v + 1 Iw gh gh ass ass disc ass ass 1 v + 1 ()v + ( 1 1 ) ( v ) gh gh utipy by v + 8v + v 1gh 11v 1gh v 1 11 gh v u + as a v u 1 11 gh 0 6 s h 11 g (ii) ass: F a g T ( 6 11 g ) g 11T g ass: 11T 0g T 0 11 g F a S g ( 6 11 g ) 11S 11g 6g N 0 11S 17g S 17 11 g adius F 0 g 9

Q. 8. Gain in K.E. Lss in.e. 1 v + 1 Iw gh 1 v + 1 ( )( v ) g(s sin 0 ) assuing it s a distance s dwnhi 1 v + 1 v gs v gs v u + as a v u gs _ 0 1 s s g y p ( ) di y d y d p y (y) dy I dy p p( ) y dy ( ) [ y ] ( ) ( ) _ (i) ( )( + ) ( ) I ( + ) QED I ( + ) NZL: ΣL Iq.. but p: g ( + ) q.. (ii) Gain in K.E. Lss in.e. 1 v + 1 Iw gh 1 v + 1 [ 1 ( + ) ] ( v ) gh utipy by v + ( + )v gh v ( + + ) gh v ( + ) gh v gh + v u + as a v u s _ gh + 0 h g + (iii) F a Eecise 1D g T ( g + ) T g ( 1 + ) g ( + + ) g ( + + ) 10 T O g I ( + ) + Q. 1. d: I Length: ass: F the pund enduu: I T p gh Hee h : T p g T p g

Q.. Disc: I O I + I I T p gh p g p g O Q.. The d: y I The syste: I 16 The pint ass: I () Fces: esutant: h g y g Q.. g Taking ents abut : g() + g() gh X G X h ass: I XX I (Squae Laina) I XX (Standad Fua) ependicua es: I G I + I yy I G I I G aae es: I I G + Hee S I + ( ) I 8 I T p gh p 8 g p 8 g Q. 5. The ass f the syste is. I T p gh p 16 p ()g( ) p 16 9g 8 p g The d: I The disc: I I + d 1 () + ()() 19 The syste: I + 19 61 11

T find h: Fces: II es: I I + p g g _ I 15 + (9) 9 esutant: I Tta I d + I Laina h 1 + 9 g g() + g() g(h) 87 Find sitin f ente f Gavity G: Q. 6. (i) h 7 The ass f the syste is. I T p gh 61 p ()g( 7 ) p 61 1g X X Ments abut p: () + (9) h h 6 I S T p gh p 87 ()g(6) p 19 16g (ii) Sipe enduu Equivaent: k p g p 19 16g k 19 16 6 6 Q. 7. I I + d d: 1 + 1 I () I 1 Laina: I XX ( ) I () es: I I XX + I _ 15 h I T p gh _ 1_ p + g p 7 6g 1_ + 7 6 + 6 7 6 7 + 0 ( )( ) 0 O 1

Q. 8. (a) B (ii) Fces: g g (b) (ii) I I + I B 1 + 1 c The d: The aina: I c + d + () 9 The syste: + 9 11 esutant: h g Taking ents abut p: g() + g() gh h The ass f the syste is. I T p gh p 11 ()g() p 11 g Q. 9. (i) sitin 1 q sitin q Standad sitin The disc: I c + d 1 + The pint ass: ()() 8 The syste: + 8 19 1

gh + gh + 1 Iw gh + gh + 1 Iw Disc int Mass Syste Disc int Mass Syste g() + ()g() + 1 I(0) g() + ()g(0) + ( 1 19 ) w (ii) T find h: Fces: 5g 19 w w 0g 19 esutant: g g g g() + g() g(h) h 5 The ass f the syste is. 19 I T p gh p ()g 5 p 19 10g If this equas p g, then 19 10 Q. 10. (i) The d: Taking ents abut a: a ()p p The pint ass: I a y The syste p + y (ii) T find h: Fces a y g g esutant b gy + gp gh h y + p The ass f the syste is. I T p gh p + y p g ( y + p ) p p + y g(y + p) But this equas p 0p g p + y y + p 0p 1 a h g b y 0py + 1p 0 (y p)(11y 6p) 0 y p O 6p 11

Q. 11. (i) Standad f (ii) S I Tta 8 + ( ) I Tta 16 QED + (16 ) X O I XX I G X (iv) Nte: By syety, cente f gavity f syste is at G h in pat(ii) I T p gh T p 16 5 g T p 8 QED 5g ependicua es: I G I + I yy Eecise 1E I G aae es: Q. 1. c (iii) I O I G + whee I O + ( ) I O 8 D Laina: G B F (ii) I O 8 ds and B: Length ass I I O I +, ( es) I O + ( + ) I T p gh T p ( + ) g dt d [ p 1 1 g + g ] 1 [ [ 1_ dt g d p g ] g + g _ ] 1_ [ g 1 g p [ 1 g + g ] 1 g + 1 g ] 0 f iniu T I O ds and D: + 5 I O I Mid pint + + ( 5 ) _ I O 16 F iniu T Q.. (, ) t Mass: d: I O I O 15

es: Q.. I O I + + I Tta I Mass + I d G + + _ 9 + T p [ I gh ] T p 9 + ()g T p [ g + 9g ] 1_, F Min T, dt d 0 dt d p [ g + 9g ] 1 [ 1 g 9g ] 1 g 9g F Min T Disc: I G es: + _ + T p [ I gh ] T p + g Q.. Squae: I I yy es: I G ZI X G X If, we get + T p g p g F iniu T, dt d 0 es: I G + + T p [ I gh ] p + g p [ g + g ] 1 dt d p [ dt d 0 g + g 1 g g ] 1 [ g + 1 g ] F iniu T QED F T p [ g + g ] 1... dt d p [ dt d 0 g + 1 g + g ] 1 [ g F T p + g p g < p g since < g + 1 g ] QED 16

Q. 5. Squae Laina: Q. 6. (a) Standad f G I (b) Standad f (c) d: I a Disc: I ( a ) I a a c X a I es: I a + I Tta I d + I Disc I (i) I ( ) I G I ( es) I G es: I I G + I + t. Mass: : I (1 ) : I (1 + ) I Tta I Laina + I t. Mass + + (1 + ) + (1 + + ) + 5 I (ii) T p, By syety cente f gh gavity f syste is at G. T p [ ( + 5 ) 5g ] (iii) T p 5g [ + ] 5 QED d(t ) d p 5g { 1 [ (10) ( + 5 )( 1) ] p 5g [ 5 ] F Miniu T, dt d 0 a + a + (i) I TOTL (a + 1 ) QED (ii) Nte: In this questin the pane f the disc is pependicua t the pane in which the d ves, i.e. as shwn in diaga the disc ves Int the page. I Nw, T p gh We need t find h, (the psitin f cente f gavity) Taking ents abut : (a) + 5h h a + 5 S T p (a + 1 )(5) 5(g)(a + ) T p (a + 1 ) g(a + ) Nw, Miniuu T ccus f (a + 1 ) iniised (a + ) 1 (a + ) [ (a + )() (a + 1 )() ] (a + )() (a + 1 )() a + a + 1 1 + a a 0 ( + a)( a) 0 5 5 a F iniu T QED 17