Role of Heteronuclear Interactions in Selective H 2 Formation from HCOOH Decomposition on Bimetallic Pd/M (M=Late Transition FCC Metals) Catalysts

Similar documents
Supplementary Information for:

Supporting Information. DFT Study of Methane Synthesis from Syngas on Ce Doped Ni(111) Surface

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol

Insights into Different Products of Nitrosobenzene and Nitrobenzene. Hydrogenation on Pd(111) under the Realistic Reaction Condition

Supporting information for Chemical and Electrochemical. Surfaces: Insights into the Mechanism and Selectivity from DFT.

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Supporting Information. Water-Gas Shift Activity of Atomically Dispersed Cationic Platinum versus Metallic Platinum Clusters on Titania Supports

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

Geometric Parameter Effects on Ensemble Contributions to Catalysis: H 2 O 2 Formation from H 2 and O 2 on AuPd Alloys. A First Principles Study

Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores

New Challenges of Electrokinetic Study in Investigating the Reaction Mechanism of Electrochemical CO 2 Reduction

Electrocatalysis: Experimental Techniques and Case Studies

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Supporting Online Material (1)

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys

1 Adsorption of NO 2 on Pd(100) Juan M. Lorenzi, Sebastian Matera, and Karsten Reuter,

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Bifunctional alloys for the electroreduction of CO 2 and CO

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Supporting Information. First principles kinetic study on the effect of zeolite framework on 1-butanol dehydration

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Universality in Surface Mixing Rule of Adsorption Strength for Small. Adsorbates on Binary Transition Metal Alloys

Supporting Information

Supporting Information for: Metal-Free Single Atom Catalyst for N2 Fixation Driven by. Visible Light

Trends in the exchange current for hydrogen evolution

SUPPLEMENTARY INFORMATION

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation

Supplementary Figure 1 Nano-beam electron diffraction Nano-beam electron diffraction

Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2

Chapter 19 Chemical Thermodynamics Entropy and free energy

High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation.

The Edge Termination Controlled Kinetics in Graphene. Chemical Vapor Deposition Growth

CO and NO induced disintegration of Rh, Pd, and Pt nanoparticles on TiO 2 (110): ab initio thermodynamics study

Reaction Mechanism of Area-Selective Atomic

Pd-Fe bimetallic catalysts have been widely studied in

Heterogeneous catalysis: the fundamentals Kinetics

Au-C Au-Au. g(r) r/a. Supplementary Figures

Supplementary information for How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

Activation and Coupling: First Principles. Selectivity of the Catalyst

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China,

) 3 2. The nuclear and electronic partition functions are both neglected, and the total partition function q can be written as below:

Supporting Information

Part III: Theoretical Surface Science Adsorption at Surfaces

Supporting Information

When atomic-scale resolution is not enough: Heat and mass transfer effects in in-situ model catalyst studies

SUPPLEMENTAL MATERIAL

Many noble metal-based catalysts are susceptible to

Acidic Water Monolayer on Ruthenium(0001)

Extrinsic Point Defects: Impurities

= k 2 [CH 3 *][CH 3 CHO] (1.1)

Methanol-Selective Oxidation Pathways on Au Surfaces: A First- Principles Study

DISSOLUTION OF OXYGEN REDUCTION ELECTROCATALYSTS IN ACIDIC ENVIRONMENT. A Dissertation ZHIHUI GU

First-Principles Study of Structure Sensitivity of Chain Growth and. Selectivity in Fischer-Tropsch Synthesis on HCP Cobalt Catalysts

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Kinetic modeling in heterogeneous catalysis.

Gibbs Free Energy Study Guide Name: Date: Period:

Surface Plasmon-Induced Hot Carrier Effect on Catalytic Activity of CO oxidation on Cu 2 O/Hexoctahedral Au Inverse Catalyst

Transition State Enthalpy and Entropy Effects on Reactivity. and Selectivity in Hydrogenolysis of n-alkanes

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution

Supplementary Information

CO Adsorption on Pd-Au Alloy Surface: Reversible Adsorption Site. Switching Induced by High-Pressure CO

Chemistry 1B, Fall 2012 Lecture 23

Os/Pt Core-Shell Catalysts Validated by

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Microkinetic Modeling

Gibbs Free Energy. Evaluating spontaneity

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry S H 2 = S H 2 R ln P H2 P NH

Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University,

Chapter 19 Chemical Thermodynamics

ADSORPTION ON SURFACES. Kinetics of small molecule binding to solid surfaces

Theoretical Models for Chemical Kinetics

Oxygen Reduction Reaction

Arghya Bhowmik, Dr. Heine Anton Hansen and Prof. Dr. Tejs Vegge*

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Correlations in coverage-dependent atomic adsorption energies on Pd(111)

Surface Science 606 (2012) Contents lists available at SciVerse ScienceDirect. Surface Science

TOPIC 6: Chemical kinetics

Achieving Selective and Efficient Electrocatalytic Activity for CO 2 Reduction Using Immobilized Silver Nanoparticles

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

Supporting Information for PbTiO 3

Supporting Information

Supplementary Information. Rational Screening Low-Cost Counter Electrodes for Dye-Sensitized Solar Cells

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis

For more info visit

Performance Enhancement by Adaptation of Long Term Chronoamperometry in Direct Formic Acid Fuel Cell using Palladium Anode Catalyst

Kinetic Monte Carlo (KMC)

Structure and local reactivity of PdAg/Pd(111) surface alloys

Chapter 12. Chemical Kinetics

Chemistry 1B, Fall 2016 Topic 23

Hydrogenation of Single Walled Carbon Nanotubes

on-line kinetics 3!!! Chemistry 1B Fall 2013

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Transcription:

Supporting Information Role of Heteronuclear Interactions in Selective H 2 Formation from HCOOH Decomposition on Bimetallic Pd/M (M=Late Transition FCC Metals) Catalysts Jinwon Cho 1, #, Sangheon Lee 1,4,#, Sung Pil Yoon 1, Jonghee Han 1,3, Suk Woo Nam 1,3, Kwan-Young Lee 3,*, and Hyung Chul Ham 1,2,* 1 Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea 2 Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 305-333, Republic of Korea 3 Green School (Graduate School of Energy and Environment), Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 136-701, Republic of Korea 4 Department of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea * Corresponding Authors: Dr. Hyung Chul Ham, Prof. Kwan-Young Lee Email: hchahm@kist.re.kr, kylee@korea.ac.kr [#] These authors equally contributed as the first authors. - 1 -

A. Coverage effects on the selective H2 production via HCOOH decomposition Table S-1. Calculated Reaction Energy Changes (ΔE) and Activation Energies (Ea) for Each Dehydrogenation and Dehydration Pathway with respect to Fully Separated Adsorbed Species (here, separation state was evaluated by individually placing each adsorbed species on the 2 2 and 3 3 surface unit cell) on the 2 2 and 3 3 Surface Unit Cells [Pd(111), Pd/Ag(111)]. Unit is given in ev. PW91 3 3 2 2 E /(Ea) Pd/Ag(111) Pd(111) Pd/Ag(111) Pd(111) HCOOH HCOO + H HCOO CO2 + H 0.07/(0.69) 0.24/(0.64) 0.04/(0.72) 0.14/(0.68) 0.78/(0.78) 0.43/(0.87) 0.58/(0.81) 0.41/(0.90) HCOOH HCO + OH 0.75/(1.12) 0.66/(1.02) 0.96/(1.19) 0.90/(1.08) HCO + OH CO + H2O 2.13 1.94 1.83 1.78 Table S-2. Comparison of Binding Energy of HCO and OH on the Pd(111), Pd/Cu(111) and Pd/Ag(111) between 2 2 and 3 3 Surface Unit Cells. Unit is given in ev 2 2 Pd Pd/Cu Pd/Ag OH (at bri) 2.68 2.22 2.65 OH (at fcc) 2.64 2.05 2.79 OH (at hcp) 2.51 1.98 2.64 OH (at top) 2.43 2.06 2.23 HCO (at top) 2.21 1.86 1.96 HCO (at bri) 2.21 1.70 1.93 HCO (at fcc) 2.42 1.68 2.24 HCO (at hcp) 2.38 1.71 2.23 3 3 Pd Pd/Cu Pd/Ag OH (at bri) 2.72 2.28 2.64 OH (at fcc) 2.71 2.22 2.84 OH (at hcp) 2.53 2.00 2.73 OH (at top) 2.44 2.14 2.33 HCO (at top) 2.25 2.06 2.21 HCO (at bri) 2.27 2.07 2.14 HCO (at fcc) 2.47 2.05 2.42 HCO (at hcp) 2.45 2.06 2.43-2 -

B. Stability of the bimetallic core shell catalysts In fact, some experimental studies found surface segregation in homogeneous PdxAg1 x alloy nanoparticle under heat treatment. 1 On the other hand, for the fully covered Ag-Pd core shell nanoparticle no surface phase segregation was found after heat treatment according to the analysis of XRD patterns. 2 The experimental study by Tedsree et al. also demonstrated that the core shell structure was maintained with no exposure of Ag core even after many hours of HCOOH decomposition reaction. 2 These results indicate that once the Ag core is fully covered by the Pd monolayers, the core shell nanoparticles become kinetically stable under the extreme conditions. 2 Thus, we believe that the Ag-Pd core shell nanoparticle is indeed a stable catalyst under the reaction conditions. Another study of surface stabilization is also observed in the Au-Pd core-shell nanoparticle. Gu et al. experimentally conducted the H2 production via HCOOH decomposition on Au-Pd core-shell structure and reported the improved reactivity of Au-Pd core-shell catalyst toward H2 production compared to monometallic Pd catalyst with little change of catalytic activity, suggesting that the structure of Au-Pd core-shell catalyst can be kinetically stable under real reaction conditions. 3 Similar surface stabilization effects were also demonstrated by Larsen et al. for the submonolayer Pd films deposited on V, Mo, W, and Au foils. 4 These Ag-Pd and Au-Pd cases are the clear examples where the kinetic stabilization effect by the thin, uniform Pd skin layer can suppress the thermodynamic driving force toward the surface segregation moves of the core metals (such as Au, Ag) at low temperatures. We think that the kinetic stabilization effect also works in the other Pd/M catalysts, although the long term durability of the real Pd/M catalysts still needs further experimental validation, which is beyond the scope of the present work. To evaluate the kinetic stabilization effect, we calculate the reaction energy changes and activation energy barriers for the surface segregation moves of the core metal in the HCOO covered Pd/M model surfaces with a Pd vacancy introduced into the topmost Pd monolayer. We also predict the binding energy of HCOO for the initial (M at the subsurface layer) and segregated (M at the top surface layer) Pd/M catalysts. As shown in Figure S-1 below, the calculated segregation energies and energy barriers are 0.75/0.97, 1.27/1.75, 1.62/1.89, 0.28/0.87, 0.16/0.29, and 0.00/0.36 ev for Pd/Cu, Pd/Rh, Pd/Ir, Pd/Pt, Pd/Au, and Pd/Ag, respectively and we expect much greater activation energy barriers for the defect free Pd overlayer cases. This is also consistent with the variation of the binding energy of HCOO as the subsurface M atom migrated from the subsurface to the top surface layer. Note the reduction of binding energy of HCOO after the segregation of M atom by 0.23~0.07eV compared to the initial (M at the subsurface layer) Pd/M catalysts. Considering that the calculated activation energy barriers for the surface segregation moves are greater than or comparable to the experimentally demonstrated Pd/Ag and Pd/Au cases and the HCOOH decomposition occurs at relatively lower temperatures (< 100 C) in HCOOH based low temperature fuel cells, these surface segregation moves are hardly likely to occur in real operating conditions. - 3 -

Binding energy of HCOO [ev] Pd/Rh Pd/Pt Pd/Ir Pd/Cu Pd/Au Pd/Ag Initial (M at the subsurface layer) Pd/M(111) slab 2.75 2.94 2.87 2.80 2.74 2.57 Segregated PdM alloy/m(111) (M at the top surface layer) slab 2.30 2.53 2.34 2.10 2.11 2.34 Figure S-1. (Top) Calculated segregation and activation energies for the vacancy-mediated migration of M atom from the subsurface to the top surface in HCOO-covered Pd/M(M=Rh, Pt, Ir, Cu, Au, and Ag) structures. (Middle) Calculated binding energy of HCOO for the initial (M at the subsurface layer) and segregated (M at the top surface layer) Pd/M catalysts (Bottom) Predicted molecular configuration at the initial, transition, and final states in Pd/Au(111) catalysts. Green, yellow, brown, red and white balls represent Pd, Au, C, O, and H atoms respectively. - 4 -

Figure S-2. Reaction pathway of HCCOH decomposition on the Pd/M(111) surface via the carboxyl (COOH) or formate (HCOO) pathway. - 5 -

Figure S-3. Potential energy diagram for the HCOOH decomposition to CO2+H via the carboxyl (COOH) (red line) or formate (HCOO) (grey line) pathway on the Pd(111) surface. Ts1 and Ts2 indicates the transition state at each reaction step. - 6 -

Table S-3. Calculated Reaction Energy Changes (ΔE) and Activation Energy Barriers (Ea) of HCOOH Decomposition via Carboxyl (COOH) or Formate (HCOO) Pathway with respect to Fully Separated Adsorbed Species (here, separation state was evaluated by individually placing each adsorbed species on the 2 2 surface unit cell). Unit is given in ev. Metals used for M substrates ΔE/(Ea) (ev) Rh Pt Ir Cu Pd Au Ag (DH I) HCOOH HCOO + H (DH II) HCOO CO2 + H (DCO I) HCOOH HCO + OH (DCO II) HCO + OH CO + H2O HCOOH COOH + H COOH CO2 + H COOH CO + OH (RWGS-I) CO2 + H COOH (WGS-I) CO + OH COOH COOH + OH CO2 + H2O CO2 CO2(g) OH + H H2O H2O H2O (g) H+H H2 0.06 /(0.73) 0.30 /(0.87) 1.15 /(1.12) 1.68 0.00 /(0.99) 0.24 /(0.97) 0.08 /(1.66) 0.24 (1.21) 0.08 /(1.58) 0.87 /(0.01) 0.01 /(0.01) 0.63 /(0.37) 0.22 /(0.22) 0.58 /(0.52) 0.33 /(0.51) 0.25 /(0.94) 0.77 /(0.99) 1.41 0.40 /(0.72) 0.18 /(0.98) 0.59 /(1.11) 0.18 /(1.16) 0.59 /(1.70) 0.73 /(0.01) 0.04 /(0.04) 0.05 /(0.56) 0.32 /(0.32) 0.80 /(0.59) 0.07 /(0.71) 0.18 /(0.92) 1.07 /(1.09) 1.60 0.07 /(0.94) 0.19 /(0.98) 0.05 /(1.59) 0.19 /(1.17) 0.05 /(1.54) 0.70 /(0.01) 0.03 /(0.03) 0.51 /(0.41) 0.26 /(0.26) 0.57 /(0.51) 0.21 /(0.78) 0.94 /(0.76) 1.92 /(2.02) 2.05 0.10 /(0.90) 0.63 /(0.78) 0.74 /(1.86) 0.63 /(1.41) 0.74 /(1.12) 1.39 0.05 /(0.05) 0.76 /(0.55) 0.17 /(0.17) 0.86 /(0.98) 0.14 /(0.68) 0.41 /(0.90) 0.90 /(1.08) 1.78 0.32 /(1.03) 0.24 /(0.96) 0.15 /(1.56) 0.24 /(1.20) 0.15 /(1.71) 0.66 /(0.03) 0.05 /(0.05) 0.42 /(0.51) 0.27 /(0.27) 0.99 /(0.60) 0.18 /(0.69) 0.44 /(0.85) 0.91 /(1.06) 1.93 0.17 /(0.87) 0.45 /(0.89) 0.61 /(1.07) 0.45 /(1.34) 0.61 /(1.68) 0.69 /(0.03) 0.05 /(0.05) 0.24 /(0.63) 0.27 /(0.27) 0.88 /(1.09) 0.04 /(0.72) 0.58 /(0.81) 0.97 /(1.19) 1.83 0.07 /(0.93) 0.55 /(0.81) 0.53 /(1.11) 0.55 /(1.36) 0.40 /(1.64) 0.95 0.03 /(0.03) 0.26 /(0.59) 0.22 /(0.22) 0.88 /(1.17) - 7 -

Table S-4. Calculated Reaction Energetics and Activation Barriers of Dehydrogenation and Dehydration on the Pd(111) and Pd/Ag(111) Surfaces using the Two Different PW91 and RPBE Functional with respect to Fully Separated Adsorbed Species (here, separation state was evaluated by individually placing each adsorbed species on the 2 2 surface unit cell) PW91//Energetic/(Energy Barrier) ev Pd(111) Pd/Ag(111) HCOOH to HCOO + H (DH-I) 0.14/(0.78) 0.02/(0.64) HCOO to CO2 + H (DH-II) 0.41/(0.90) 0.58/(0.81) HCOOH to HCO + OH (DCO-I) 0.90/(1.08) 0.98/(1.18) HCO + OH to CO and H2O (DCO-II) 1.79 1.83 RPBE//Energetic/(Energy Barrier) ev Pd(111) Pd/Ag(111) HCOOH to HCOO + H (DH-I) 0.01/(0.69) 0.10/(0.71) HCOO to CO2 + H (DH-II) 0.68/(0.85) 0.84/(0.76) HCOOH to HCO + OH (DCO-I) 0.97/(1.16) 1.19/(1.34) HCO + OH to CO and H2O (DCO-II) 1.79/(0.07) 2.02/(0.01) - 8 -

Figure S-4. Calculated intermediate images in the minimum energy pathway of HCOO CO2 + H reaction on the Pd surfaces. - 9 -

C. Zero Point Energy Correction and Microkinetic Modeling The Gibbs free energy change (ΔG) is calculated as follows. ΔG = ΔH+ ΔZPE TΔS where ΔH, ΔZPE, and ΔS indicates the change of enthalpy, zero point energy, and vibrational entropy in each reaction step, respectively. Here, ΔH is obtained from the total energy change of a given reaction at T=0K. The vibrational entropy and zero point energy are calculated using the following equations: # of modes Svib = k B { x i i e x i 1 ln(1 e x i)} x i = hv i k B T ZPE = 1 hv 2 i i where k B, h and x i is the Boltzmann constant, Planck's constant and vibrational mode in terms of vibrational frequency, v i, respectively. 5 For elementary reaction A* + B* k for C* + D*, where * symbolizes an adsorbed species, the equilibrium constant, and the rate constant k for is denoted as: (ΔH + ΔZPE) k for = A 0 exp ( ) k b T where A 0 is the frequency factor which is denoted as: A 0 = k bt h exp ( Δs vib.for k b ) The rate for this elementary step, now, can be expressed as: r = r for r rev = k for θ A θ B k rev θ C θ D where r for and r rev is the rate of forward and reserve reaction and θ A, θ B, θ C, and θ D is the surface coverages of the species A, B, C, and D respectively. 5 For the microkinetic modeling of HCOOH decomposition, we have calculated surface coverages of the reaction species of HCOOH, HCOO, HCO, CO2, H2, H2O, CO and OH as follows. - 10 -

Table S-5 Elementary reaction steps for a microkinetic model No Elementary reaction steps 1 HCOOH (g)+ * HCOOH* 2 HCOOH* + * HCOO*+H* 3 HCOO* + * CO2* + H+ 4 H* + H* H2*+ * 5 CO2* CO2(g) + * 6 H2* H2 (g) + * 7 HCOOH*+ * HCO*+OH* 8 HCO*+OH* H2O* + CO* 9 H2O* H2O (g) + * 10 CO* CO (g) + * 1. HCOOH(g) + θ HCOOH* 2. HCOO* dθ HCOO dt θ HCOOH = P HCOOH θ k 1.eq = r 2 r 3 = k 2 θ HCOOH θ k 3 θ HCOO θ = 0 3. H* 4. HCO*, OH* 5. CO2* dθ HCO dt θ HCOO = k 2 k 3 P HCOOH θ k 1.eq dθ H dt = r 2 + r 3 2r 4 = 0 θ H = ( k 2P HCOOH θ k 1.eq k 4 ) 1 2 θ = r 7 r 8 = k 7 θ HCOOH θ k 8 θ HCO θ OH = 0 θ HCO = θ OH = k 1 7 (P k HCOOH k 1.eq ) 8 2 θ dθ CO 2 dt = r 3 r 5 = k 3 θ HCOO θ k 5 θ CO2 = 0 θ CO2 = k 2 k 5 P HCOOH θ 2 k 1.eq - 11 -

6. H2* dθ H 2 dt = r 4 r 6 = k 4 θ H 2 k 6 θ H2 = 0 θ H2 = k 4 k 6 P HCOOH θ 2 k 1.eq 7. H2O* dθ H 2O dt = r 8 r 9 = k 8 θ HCO θ OH k 9 θ H2 O = 0 θ H2 O = k 7 k 9 P HCOOH θ 2 k 1.eq 8. CO* dθ CO dt = r 8 r 10 = k 8 θ HCO θ OH k 10 θ CO = 0 θ CO = k 7 k 10 P HCOOH θ 2 k 1.eq 9. Site balance equation 1 = θ HCOOH + θ HCOO + θ H + θ CO2 + θ H2 + θ HCO + θ OH + θ H2 O + θ CO For gas phase molecules, the Gibbs free energy, ΔGgas, is obtained as follows ΔGgas (T,P) = ΔH(T,P)+ ΔZPE TΔS at T=323k, P=1bar where ΔH and ΔS can be described as: ΔH = CpΔT ΔS = C p ln ( T T 0 ) k ln ( T T 0 ) where Cp is a heat capacity of gas molecule, and we used experimental data for Cp. For equilibrium constant, K ad, for adsorption and desorption, the following equation is used: K ad = exp ( ΔG ads k b T ) where ΔG ads is Gibbs free energy of an adsorbed molecule on the Pd/M surface. - 12 -

Table S-6. Calculated Reaction Energy Changes (ΔG) and Activation Energies (Ga) for Each Dehydrogenation and Dehydration Pathway on Pd/M with respect to Fully Separated Adsorbed Species (here, separation state was evaluated by individually placing each adsorbed species on the 2 2 surface unit cell). ΔG = ΔH+ ΔZPE TΔS at T=323K. Calculated H2 TOF (Turnover frequency) using a Microkinetic Model is given in (hr 1 ). ΔG/(G a ) (ev) HCOOH HCOO +H HCOO CO 2 +H HCOOH HCO+OH HCO+OH CO+H 2 O H 2 TOF (hr 1 ) Metals used for M substrates Rh Pt Ir Cu Pd Au Ag 0.08 /(0.30) 0.43 /(0.74) 1.15 /(1.15) 1.77 0.30 /(0.08) 0.38 /(0.79) 0.77 /(0.89) 1.81 0.01 /(0.25) 0.27 /(0.77) 1.03 /(1.03) 1.71 0.23 /(0.32) 1.08 /(0.66) 1.94 /(1.96) 2.18 0.07 /(0.25) 0.51 /(0.75) 0.90 /(0.97) 1.77 0.17 /(0.20) 0.54 /(0.71) 0.88 /(0.96) 1.96 0.05 /(0.14) 0.69 /(0.69) 0.95 /(1.04) 1.88 4.24 10 2 2.74 10 9 3.35 10 4 2.60 10 2 8.44 10 5 1.53 10 3 4.48 10 2-13 -

Table S-7. Calculated Enthalpy(ΔHrxn), Gibbs Free Energy (ΔGrxn), Zero Point Energy (ΔZPErxn), Entropy (ΔSrxn) Changes and Activation Energy Barriers (ΔGa, ΔHa) for Each Reaction Step on Pd/M with respect to Fully Separated Adsorbed Species (here, separation state was evaluated by individually placing each adsorbed species on the 2 2 surface unit cell). ΔG = ΔH+ ΔZPE TΔS at T=323K. HCOOH* HCOO*+H* Surface ΔHrxn ΔZPErxn ΔSrxn ΔHa ΔZPEa ΔSa ΔGrxn ΔGa Pd/Rh 0.06 0.06 0.00029 0.73 0.499 0.00022 0.08 0.30 Pd/Pt 0.33 0.05 0.00028 0.51 0.496 0.00018 0.30 0.08 Pd/Ir 0.07 0.05 0.00030 0.71 0.504 0.00010 0.01 0.25 Pd/Cu 0.21 0.06 0.00032 0.78 0.519 0.00017 0.23 0.32 Pd 0.14 0.05 0.00042 0.68 0.510 0.00024 0.07 0.25 Pd/Au 0.18 0.06 0.00023 0.69 0.513 0.00006 0.17 0.20 Pd/Ag 0.04 0.07 0.00014 0.72 0.531 0.00004 0.05 0.14 HCOO* CO2*+H* Surface ΔHrxn ΔZPErxn ΔSrxn ΔHa ΔZPEa ΔSa ΔGrxn ΔGa Pd/Rh 0.30 0.06 0.00022 0.87 0.061 0.00020 0.43 0.74 Pd/Pt 0.25 0.06 0.00025 0.94 0.090 0.00018 0.38 0.79 Pd/Ir 0.18 0.05 0.00019 0.92 0.094 0.00017 0.27 0.77 Pd/Cu 0.94 0.05 0.00024 0.76 0.049 0.00014 1.08 0.66 Pd 0.41 0.06 0.00014 0.90 0.058 0.00027 0.51 0.75 Pd/Au 0.44 0.06 0.00012 0.85 0.088 0.00017 0.54 0.71 Pd/Ag 0.58 0.06 0.00013 0.81 0.063 0.00017 0.69 0.69 HCOOH* HCO*+OH* Surface ΔHrxn ΔZPErxn ΔSrxn ΔHa ΔZPEa ΔSa ΔGrxn ΔGa Pd/Rh 1.18 0.05 0.00012 1.22 0.226 0.00037 1.15 1.15 Pd/Pt 0.77 0.06 0.00019 0.99 0.201 0.00032 0.77 0.89 Pd/Ir 1.07 0.05 0.00004 1.09 0.247 0.00039 1.03 1.03 Pd/Cu 1.92 0.04 0.00018 2.02 0.223 0.00049 1.94 1.96 Pd 0.90 0.05 0.00015 1.08 0.289 0.00054 0.90 0.97 Pd/Au 0.91 0.05 0.00009 1.06 0.197 0.00029 0.88 0.96 Pd/Ag 0.96 0.05 0.00011 1.19 0.244 0.00030 0.95 1.04 H*+H* H2* Surface ΔHrxn ΔZPErxn ΔSrxn ΔHa ΔZPEa ΔSa ΔGrxn ΔGa Pd/Rh 0.34 0.01 0.00027 0.52 0.04 0.00039 0.28 0.36 Pd/Pt 0.58 0.01 0.00039 0.59 0.01 0.00032 0.48 0.48 Pd/Ir 0.29 0.02 0.00034 0.51 0.02 0.00032 0.20 0.38-14 -

Pd/Cu 0.50 0.00 0.00033 0.55 0.02 0.00028 0.44 0.44 Pd 0.77 0.00 0.00032 0.77 0.00 0.00024 0.52 0.69 Pd/Au 0.87 0.01 0.00041 1.09 0.02 0.00022 0.75 1.03 Pd/Ag 0.83 0.01 0.00036 1.17 0.00 0.00037 0.72 1.06 HCO*+OH* CO*+H2O* Surface ΔHrxn ΔZPErxn ΔSrxn ΔGrxn Pd/Rh 1.68 0.40 0.00151 1.77 Pd/Pt 1.41 0.40 0.00117 1.39 Pd/Ir 1.60 0.40 0.00157 1.71 Pd/Cu 2.05 0.40 0.00163 2.18 Pd 1.78 0.40 0.00120 1.77 Pd/Au 1.93 0.40 0.00132 1.96 Pd/Ag 1.83 0.40 0.00140 1.88-15 -

Table S-8. Calculated Enthalpy (ΔH), Gibbs Free Energy (ΔG), Zero Point Energy (ΔZPE), Entropy (ΔS) Change in the Adsorption of Key Intermediates on the Pd/M Surfaces. ΔG = ΔH+ ΔZPE TΔS at T=323K. HCOOH* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 0.30 0.44 0.00108 0.21 Pd/Pt 0.44 0.43 0.00104 0.35 Pd/Ir 0.37 0.44 0.00100 0.25 Pd/Cu 0.22 0.45 0.00117 0.15 Pd 0.37 0.44 0.00116 0.30 Pd/Au 0.39 0.44 0.00098 0.27 Pd/Ag 0.29 0.45 0.00099 0.16 HCOO* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 2.32 0.30 0.00081 2.28 Pd/Pt 2.62 0.30 0.00078 2.58 Pd/Ir 2.48 0.30 0.00075 2.44 Pd/Cu 1.90 0.30 0.00083 1.88 Pd 2.42 0.30 0.00072 2.36 Pd/Au 2.43 0.30 0.00079 2.38 Pd/Ag 2.23 0.30 0.00095 2.24 CO2* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 0.01 0.16 0.00099 0.17 Pd/Pt 0.04 0.16 0.00100 0.20 Pd/Ir 0.03 0.16 0.00098 0.19 Pd/Cu 0.05 0.16 0.00104 0.23 Pd 0.05 0.16 0.00088 0.17 Pd/Au 0.05 0.17 0.00088 0.18 Pd/Ag 0.03 0.16 0.00105 0.22 H* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 2.63 0.08 0.00003 2.56 Pd/Pt 2.85 0.08 0.00003 2.79 Pd/Ir 2.67 0.07 0.00004 2.54 Pd/Cu 2.82 0.08 0.00003 2.75 Pd 2.80 0.08 0.00002 2.72-16 -

Pd/Au 2.84 0.08 0.00003 2.78 Pd/Ag 2.81 0.08 0.00003 2.73 HCO* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 1.99 0.23 0.00061 1.95 Pd/Pt 2.24 0.23 0.00067 2.23 Pd/Ir 2.00 0.23 0.00070 2.01 Pd/Cu 1.50 0.23 0.00061 1.46 Pd 2.21 0.23 0.00070 2.22 Pd/Au 2.08 0.23 0.00070 2.08 Pd/Ag 1.96 0.23 0.00072 1.97 OH* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 2.59 0.17 0.00036 2.54 Pd/Pt 2.86 0.17 0.00029 2.77 Pd/Ir 2.71 0.17 0.00034 2.65 Pd/Cu 2.22 0.17 0.00036 2.17 Pd 2.68 0.17 0.00032 2.61 Pd/Au 2.82 0.17 0.00031 2.74 Pd/Ag 2.65 0.17 0.00028 2.72 CO* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 1.92 0.09 0.00050 1.99 Pd/Pt 2.36 0.09 0.00046 2.42 Pd/Ir 1.94 0.09 0.00050 2.01 Pd/Cu 1.48 0.09 0.00050 1.55 Pd 2.28 0.10 0.00043 2.31 Pd/Au 2.43 0.09 0.00046 2.50 Pd/Ag 2.23 0.09 0.00046 2.29 H2O* Surface ΔH ΔZPE ΔS ΔG Pd/Rh 0.22 0.31 0.00071 0.14 Pd/Pt 0.32 0.31 0.00084 0.28-17 -

Pd/Ir 0.26 0.31 0.00087 0.23 Pd/Cu 0.17 0.31 0.00085 0.14 Pd 0.27 0.32 0.00063 0.16 Pd/Au 0.27 0.32 0.00064 0.17 Pd/Ag 0.22 0.31 0.00076 0.15-18 -

Table S-9. Real Vibrational Frequencies (cm 1 ) of the Transition State for the DH I, DH II, and DCO I Steps, denoted in Ts1, Ts2, and Ts3 respectively. One Imaginary Number is obtained at Transition State. DH I Pd/M Pd Rh Pt Ir Ag Cu Au Ts1 67 310 30 60 18 26 24 57 90 102 96 27 45 85 114 74 130 103 45 61 103 225 106 245 154 175 169 209 260 186 287 252 260 232 268 356 256 412 280 324 263 376 743 272 661 314 590 724 512 801 729 757 729 731 762 747 886 962 792 967 901 958 854 947 1262 961 1260 965 1123 963 1260 1281 1277 1288 1268 1259 1271 1283 1471 1297 1481 1303 1285 1301 1513 1836 1511 1901 1515 1510 1519 2848 2839 2876 2856 2843 2827 2861 DH II Pd/M Pd Rh Pt Ir Ag Cu Au Ts2 18 26 51 169 51 39 52 81 75 77 99 88 101 82 161 113 89 46 96 115 106 189 162 193 89 166 141 172 409 251 241 141 256 219 250 555 659 663 588 453 651 665 781 932 845 828 764 936 847 1119 1039 1040 1053 1005 1067 1082 1389 1281 1320 1239 1246 1286 1243 1840 1717 1755 1907 1520 1710 1730 2299 2457 2022 2070 1956 2529 1976-19 -

DCO I Pd/M Pd Rh Pt Ir Ag Cu Au Ts3 64 37 24 64 13 37 38 148 168 115 157 80 118 132 195 234 143 191 164 209 177 278 364 310 339 336 310 238 442 490 587 587 501 560 568 637 844 940 856 793 985 801 948 1215 1151 1170 1060 1193 1243 1191 1540 1480 1489 1272 1592 1470 1429 1605 1798 1687 1589 1776 1716 1752 1961 1898 1763 1735 1957 1843 2009 2048 1984 1927 1951 2108 1939 2383 2419 2317 2410 2370 2331 2277 2926 2844 2889 2830 2769 2897 2910 3510 3593 3508 3550 3447 3548 3541-20 -

Table S-10. Calculated Degree of Rate Control (XRC) based on the TOF of the Overall H2 Production dehydrogenation dehydration Reaction steps Rh Pt Ir Cu Pd Au Ag HCOOH* * HCOO* + H* 1.00 1.00 1.00 1.00 1.00 0.89 0.84 HCOO* + * CO2* + H* 2.00 2.00 2.00 2.00 2.00 1.84 1.69 H* + H* H2* + * 0.00 0.00 0.00 0.00 0.00 0.04 0.16 CO2* CO2(g) + * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 H2* H2(g) + * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HCOOH* + * HCO* + OH* 0.00 0.00 0.00 0.00 0.00 0.03 0.00 HCO* + OH* H2O* + CO* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 H2O* H2O(g) + * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CO* CO(g) + * 0.00 0.00 0.00 0.00 0.00 0.03 0.00 Sum of XRC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Table S-11. Calculated Degree of Rate Control (XRC) based on the TOF of the Overall CO Production dehydrogenation dehydration Reaction steps Rh Pt Ir Cu Pd Au Ag HCOOH* +* HCOO* + H* 2.00 2.00 2.00 2.00 2.00 1.88 1.84 HCOO* + * CO2* + H* 2.00 2.00 2.00 2.00 2.00 1.84 1.69 H* + H* H2* + * 0.00 0.00 0.00 0.00 0.00 0.04 0.16 CO2* CO2(g) + * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 H2* H2(g) + * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 HCOOH* + * HCO* + OH* 1.00 1.00 1.00 1.00 1.00 0.97 1.00 HCO* + OH* H2O* + CO* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 H2O* H2O(g) + * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CO* CO(g) + * 0.00 0.00 0.00 0.00 0.00 0.03 0.00 Sum of XRC 1.00 1.00 1.00 1.00 1.00 1.00 1.00-21 -

Based on a developed microkinetic model, we attempted to choose a RDS in dehydrogenation and dehydration steps by calculating the degree of rate control (XRC), which is defined below. Here, the larger the value of XRC is for a given step, the bigger is the impact of its rate constant on the overall reaction rate. 6,7 k i X RC = TOF(H 2 or CO) ( TOF(H 2 or CO) ) k i K i,k j i where, TOF, ki, and Kj are the turnover frequency for the overall H2 or CO production, rate constant of step i, and equilibrium constant of step j, respectively. - 22 -

Table S-12. Bond Length of Pd-Pd on Pd/M Surfaces and the Distance between Surface Pd and Subsurface M. Pd/M (Å) Pd Rh Pt Ir Ag Cu Au Pd-Pd 2.80 2.72 2.82 2.74 2.95 2.57 2.97 Pd M 2.28 2.30 2.28 2.31 2.26 2.23 2.25-23 -

Figure S-5. Projected density of d states for the PdLig M case. The dotted line at 0 ev denotes fermi level position. - 24 -

Figure S-6. Effect of surface charge polarization on the d orbitals near the Fermi level ( 0.25 < E Ef < 0). Black squares, red circles and blue triangles represent dz2, dxy+ dx2 y2 and dyz+dxz respectively. - 25 -

References 1. Wang, K-W.; Chung, S-R.; Perng, T-P. J. Alloys. Compd. 2006, 422, 223 226. 2. Tedsree, K.; Li, T.; Jones, S.; Chan, C. W. A.; Yu, K. M. K.; Bagot, P. A. J.; Marquis, E. A.; Smith, G. D. W.; Tsang, S. C. E. Nat. Nanotechnol. 2011, 6, 302-307. 3. Gu, X.; Lu, Z-H.; Jiang, H-L.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822 11825. 4. Larsen, R.; Zakzeski, J.; Masel, R. I. Electrochem. Solid-State Lett. 2005, 8, A291 A293. 5. Gokhale, A. A,; Kandoi. S.; Greeley, J. P.; Mavrikakis, M.; Dumesic, J. A. Chem. Eng. Sci. 2004, 59, 4679 4691. 6. Stegelmann C.; Andreasen, A.; Campbell, C. T. J. Am. Chem. Soc. 2009, 131, 8077 8082. 7. Meskine, H.; Matera, S.; Scheffler, M.; Reuter, K.; Metiu, M. Surf. Sci. 2009, 603, 1724 1730. - 26 -