Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator

Similar documents
Effects of resonator input power on Kerr lens mode-locked lasers

Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti:Sapphire Laser Cavities by Using Nonlinear ABCD Matrices

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

χ (3) Microscopic Techniques

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Introduction Nonstationary regimes of ultrashort pulse generation in lasers have gained a great deal of attention in recent years. While the stable op

Final laser project. Two approaches. Case- study: pick a specific laser design, model. Survey: pick a general class of lasers

IN RECENT YEARS, Cr -doped crystals have attracted a

gives rise to multitude of four-wave-mixing phenomena which are of great

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surfaceemitting

New Concept of DPSSL

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

Dispersion and how to control it

1 Mathematical description of ultrashort laser pulses

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

Ultrafast laser oscillators: perspectives from past to futures. New frontiers in all-solid-state lasers: High average power High pulse repetition rate

The Generation of Ultrashort Laser Pulses

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3

Design and operation of antiresonant Fabry Perot saturable semiconductor absorbers for mode-locked solid-state lasers

Spatiotemporal coupling in dispersive nonlinear planar waveguides

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Nanocomposite photonic crystal devices

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Ultrafast Laser Physics

Ultrafast Laser Physics

High-Harmonic Generation II

Bound-soliton fiber laser

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Engineering Medical Optics BME136/251 Winter 2017

Technique of the experiment

Photoexcited Carrier Lifetime and Refractive Nonlinearity in Direct and Indirect Band Gap Crystals on the Z-Scan Technique

Picosecond z-scan measurements of the two-photon absorption in beta-carotene solution over the nm wavelength range

PROBLEMS IN LASER PHYSICS

Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO 4 under laser diode pumping

Enhanced bistability with the line-narrowed modes in a nonlinear modulated index Fabry-Perot cavity

Neodymium Laser Q-Switched with a Cr 4+ : YAG Crystal: Control over Polarization State by Exterior Weak Resonant Radiation

Multi-pulse oscillation and instabilities in microchip self-q-switched transverse-mode laser

An alternative method to specify the degree of resonator stability

DESY Summer School Lasers and Optics

Generation of supercontinuum light in photonic crystal bers

Chapter9. Amplification of light. Lasers Part 2

Course Secretary: Christine Berber O3.095, phone x-6351,

Introduction to Nonlinear Optics

Linear and Nonlinear Optical Properties of Acridine Dye Doped PMMA Polymer

Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

LASCAD Tutorial No. 4: Dynamic analysis of multimode competition and Q-Switched operation

Second Harmonic Generation in Solid-State Materials

Mid-IR Photothermal Imaging with a Compact Ultrafast Fiber Probe Laser

E. J. SHARP, G. L. WOOD, and J. L. W. POHLMANN Army Night Vision and Electro-Optics Center, Fort Belvoir, VA

SUPPLEMENTARY INFORMATION

Lasers and Electro-optics

Nonlinear optics spectroscopy in glasses doped with nanoparticles

Optics, Light and Lasers

INTERFEROMETRIC METHOD FOR THE STUDY OF SPATIAL PHASE MODULATION INDUCED BY LIGHT IN DYE-DOPED DNA COMPLEXES

Sintec Optronics Pte Ltd

Bifurcation of fundamental Gaussian modes in Kerr-lens mode-locked lasers

Generation of high-energy, few-cycle optical pulses

Design and construction of a tunable pulsed Ti:sapphire laser

Mechanisms of spectral shift in ultrashort-pulse laser oscillators

37. 3rd order nonlinearities

ULTRA-SHORT OPTICAL PULSE GENERATION WITH SINGLE-LAYER GRAPHENE

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Breakdown threshold and plasma formation in femtosecond laser solid interaction

Studying the Linear and Nonlinear Optical Properties by Using Z-Scan Technique for CdS Thin Films Prepared by CBD Technique

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Welcome to Ultrafast Optics

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca

Matter in Intense Laser Fields

Nonlinear Dynamics of Quantum Cascade Laser in Ring Cavity

pulses. Sec. III contains the simulated results of the interaction process and their analysis, followed by conclusions in Sec. IV.

Optical Nonlinearities in Quantum Wells

Curriculum Vitae. Sungnam Park. Department of Chemistry The University of Chicago 5735 South Ellis Ave. SCL023 Chicago, IL

Study of a QCW Light-emitting-diode (LED)-pumped Solid-state Laser

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Control and Manipulation of the Kerr-lens Mode-locking Dynamics in Lasers

Final Report for AOARD grant FA Measurement of the third-order nonlinear susceptibility of graphene and its derivatives

Graphene Based Saturable Absorber Modelockers at 2µm

Optical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Thermal Nonlinear Refraction

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate

Hiromitsu TOMIZAWA XFEL Division /SPring-8

Cross-propagating Beam-Deflection measurements of third-order nonlinear optical susceptibility

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Coherent Raman imaging with fibers: From sources to endoscopes

Miniaturization of an Optical Parametric Oscillator with a Bow-Tie. Configuration for Broadening a Spectrum of Squeezed Light

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

PbSe quantum dots grown in a high-index low-meltingtemperature glass for infrared laser applications

B 2 P 2, which implies that g B should be

Photothermal Spectroscopy Lecture 1 - Principles

A Guide to Experiments in Quantum Optics

Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO:PPLN crystal

The Gouy phase shift in nonlinear interactions of waves

Transcription:

59-70 1395 1 3 *1 () -3 - -1 (94/1/05 : 94/05/14 :)....... : Abstract Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator A. Malakzadeh*, M. J. Kamjoo, S. R. Zare Kalate Imam Hossein University (Received: 05/08/015, Accepted: 4/0/016) Femtosecond pulse lasers are one of the most widely used lasers. Femtosecond oscillator is first step to generate powerful femtosecond pulses. In this work, the laser beam propagation in an oscillator in symmetric and asymmetric designs without Kerr lens effect inside a Ti:Sa medium was simulated and the cavity stable operation conditions have been obtained. Then, Kerr lens modelocking behavior is simulated and the situation compensating the beam astigmatism is achieved. Split-step method has been used to obtain the beam intensity change in the Ti:Sa rod and shooting method has been utilized to calculate the beam spot size on the first cavity mirror. Assuming no Kerr lens effect, influence of the cavity length changes in laser beam characteristics is investigated and considering the Kerr lens effect in the laser rod, influence of the rod position in the beam characteristics and beam propagation is simulated. Finally, by considering the simulations results, conditions to achieve soft or hard aperture modelocking are discussed. Keywords: Femtosecond, Oscillator, Kerr Lens Effect, Astigmatism, Modelocking, Soft Aperture Modelocking, Hard Aperture Modelocking. * Corresponding Author E-mail: afard77@googlemail.com Advanced Defence Sci.& Tech., 016, 6, 59-70.

1395 1 60 [1] [11,10] [13] [16] [15 14] [17]..[18]. 5].[19- ABCD 3......[4 3] 4...... :.. [ 1].[3] 1.. [4-8]..1.[10 9] 3 Split-Step 4 Shooting 1 Profile Kerr lens modelocking (KLM)

61..... ABCD : Mtt (1) ABCD..[7] AtDt l3=l k +l B +l3 k. 1/Ct 1/Ct [8] ) TEM 00. :[7] q(z) ( W(z) z R(z). L z d(z)= q(z). z 1.[9] Z=0 M1 q R(0)= : (1) ( ) (3)) : z z (4) 1.. (1)...[5].[6] ABCD.1.1- () ABCD.. * ri z)..( (5) ABCD..o i. 1 Sagittal Tangential

1395 1 6 76 ( 6). m :. (7) ).( 10-5....- ( R fs=r/cos) (f=r/) (ft=rcos/). L ( B lb ). (1). ABCD : ( ) (8) fs=ft. (). ( l B ).1 ABCD. (W(z))..

63.... (9). (1)..3-..[] M 3 M (L 1 =L 34 4).3.(p=0) (). (l 3 /). () (). : (15) : (16) (10) n E0L 0. n Lc00 0 IL E0L. c 0 n n. nlc00 : (TEM 00 ) (14) 14 13 1 w w w w w n w. n n s I I0LL 0L s L : w (11).[30] ( 1) n IL n Lc 00 ( 13) t L 0L L w w t I n

1395 1 64 76 (L 1 =3L 34 ).(p=0). (). () (). 4. d d(z)= [Ln()] 1/ w(z)...4 C t. : (17) (188 ) ). 10 10 0 9.71 9.71 0 1.7 ( 1.76 1..76 0.75 cm 0.755 cm 800nm (cm) 10 10 () 0 9..71 9..71 0 () 1.7 Ti:Sapphire 800nm ) ni L. n BnL nlc00 ABCDA. (1) LB.3 (lk). 4 3. () Ti:Sapphire (FWHM)( di. Z min d min Ct. 1/.1-3 ( n). 1.(54 3

65.....L =44.5mm.7 (d min ) ( ) (W 01 ).(17 ) 1 0..-3.. W 01.. W 01 l k I.5 : 17 W(z) (L 1 =L 34 ).P=*10 5 W (19)..6 : L =49 mm z(m).8.(5) (0) : ( 1)

1395 1 (W) (7).. L = 44,5mm (8).. 49 mmm (9)... L k > Z min L k < Z min -L B. ( ).. 1 0...Z min =z+ll B +L :..... L (6) z....(i) l k.10 ( 5) ) z z min. ( L k = Z mi in-l B ).[11] (L k = Z m min L.9.(5)

67.... (dmin) - -1 ).[31 19,5] ( 14. L k < Zmin-L B. 16 15 L k > Z min. (t=s/nl)( s t -. ).[31]( L k = Z m min-l B / ).( ) P= =*10-5W.( L L k L 3.(1 11 )..( (II ) l k.1 5 (17). II ( L 3min + L 3 L k (1 ) M 4 -. =Z m 3max/ L 3) min-l B L 3 /-L d min L B. l k k.11.(i) 5

1395 1.( -17)) ((4) ) ) I M 4 M 3.((15) ) L k = Z min. P= 10-5 W.(I ) l k (L 1 =L 34 ).14. ()..(II ) l k.13 (5)..(I ) l k L 3 =106.6m.15 mm (14) II (16). L k Z Z min M3 d min.( -17)

69..... 4 ABCD....(II I ). ( t = s /n L )... L k > Z m min L k < Z min -L B Z min.. II L 3min + L 3 ) ) M 4 (L 3max / L k = Z min -L B L 3 /-L B (11. d min.( -17) (4 ) M 4 M 3 I L k k=z min II.( 15 )..16.(II ) l k (14) () ( ) ).17 d- ().n L =1.76 n p =1.77 z 0 =mm d min =d- () d min =(1/)d minp = = () min =d= minp. minp =

1395 1 70 [17] Radzewicz, C.; Pearson, G. W.; Krasinski, J. S. Use of ZnS as an Additional Highly Nonlinear Intracavity Self- Focusing Element in a Ti: Sapphire Self-Modelocked Laser ; Opt. comm. 1993, 10, 464-468. [18] Liu, Y. M.; Sun, K. W.; Prucnal, P. R.; Lyon, S. A. Simple Method to Start and Maintain Self-Mode-Locking of a Ti: Sapphire Laser ; Opt. lett. 199, 17, 119-11. [19] Emmerichs, U.; Bakker, H.; Kurz, H. Generation of High- Repetition Rate Femtosecond Pulses Tunable in the Mid- Infrared ; Opt. comm. 1994, 111, 497-501. [0] Radzewicz, C.; Pearson, G. W.; Krasinski, J. S. Use of ZnS as an Additional Highly Nonlinear Intracavity Self- Focusing Element in a Ti: Sapphire Self-Modelocked Laser ; Opt. Comm. 1993, 10, 464-468. [1] Spence, D. E.; Kean, P. N.; Sibbett, W. 60-fsec Pulse Generation from a Self-Mode-Locked Ti: Sapphire Laser ; Opt. lett. 1991, 16, 4-44. [] Asaki, M. T.; Huang, C.; Jianping, D. G.; Kapteyn, Z. H.; et al. Generation of 11-fs Pulses from a Self-Mode- Locked Ti: Sapphire Laser ; Opt. lett. 1993, 18, 977-979. [3] Kafka, J. D. Watts, M. L.; Pieterse, J. W. Picosecond and Femtosecond Pulse Generation in a Regeneratively Mode- Locked Ti: Sapphire Laser ; IEEE Journal of Quantum Electronics. 199, 8, 151-16. [4] Liu, K. X.; Flood, C. J.; Walker, D. R.; Van Driel, H. M. Kerr Lens Mode Locking of a Diode-Pumped Nd: YAG Laser ; Opt. Lett. 199, 17, 1361-1363. [5] Lee, Y. W.; Yi, J. H.; Cha, Y. H.; Yoo, B. D, Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti: Sapphire Laser Cavities by Using Nonlinear ABCD Matrices ; Journal of the Korean Physical Society. 005, 46, 1131-1136. [6] Rashidian Vaziri, M. R. Z-Scan Theory for Nonlocal Nonlinear Media with Simultaneous Nonlinear Refraction and Nonlinear Absorption ; Appl. opt. 013, 5, 4843-4848. [7] Kogelnik, H.; Dienes, A.; Shank, C. Astigmatically Compensated Cavities for CW Dye Lasers ; J. Quantum Electronics 197, 8, 373-379. [8] Vaziri, M. R.; Hajiesmaeilbaigi F.; Maleki, M. New Ducting Model for Analyzing the Gaussian Beam Propagation in Nonlinear Kerr Media and its Application to Spatial Self-Phase Modulations ; J. Optics 013, 15. [9] Saleh, B.; Teich M.; Slusher, R. E. Fundamentals of Photonics ; Physics Today. 008, 45, 87-88. [30] Milonni, P.; Eberly, J.; Wiley, J.; Sons. Lasers. New York, 1988. [31] Svelto, O.; Hanna, D. C. Principles of Lasers ; Springe. (1976). [3] Meier, B.; Penzkofer, A. Determination of Nonlinear Refractive Indices by External Self-Focusing ; Appl. Phys. 1989, 49, 513-519. [33] Siders, C. W.; Gaul, E. W.; Downer, M. C. SelfStarting Femtosecond Pulse Generation from a Ti: Sapphire Laser Synchronously Pumped by a PointingStabilized Mode Locked Nd: YAG Laser ; Rev. Sci. Instrum. 1994, 65, 3140-3144. ((16) ) L k Z min M 3. d min.( -17) ) [] Shen, Y. Recent advances in nonlinear optics", Rev. of Mod. Phys ; 1976, 48, 1. [3] Hnilo, A. A.; Kovalsky, M. G.; Agüero, M. B.; Tredicce, J. R. Characteristics of the extreme events observed in the Kerr-lens Mode-Locked Ti: Sapphire Laser ; Phys. Rev. A, 015, 91, 1-6. [4] Sheik-Bahae, M.; Said, A. A.; Hagan, D. J.; Soileau, M. J.; Van Stryland, E. W. Nonlinear refraction and Optical Limiting in Thick Media ; Opt. Eng. 1991, 30, 18-135. [5] Salin, F.; Squier, J.; Piché, M. Mode locking of Ti: Al O 3 Lasers and Self-Focusing: A Gaussian Approximation ; Opt. lett.1991, 16, 1674-1676. [6] Brabec, T.; Spielmann, H.; Curley, P. F.; Krausz, F. Kerr Lens Mode Locking ; Opt. lett. 199, 17, 19-194. [7] Cerullo, G. S.; Silvestri, De.; Magni, V. Self-Starting Kerr-Lens Mode Locking of a Ti: Sapphire Laser ; Opt. lett. 1994, 19, 1040-104. [8] Diels, J. C.; Rudolph, W. Ultrashort Laser Pulse Phenomena ; Academic Press, (006) [9]. Chen, S.; Wang, J. "Self-Starting Issues of Passive Self- Focusing Mode Locking ; Opt. lett. 1991, 16, 1689-1691. [10] Curley, P.; Ferguson.; A. Actively Mode-Locked Ti: Sapphire Laser Producing Transform-Limited Pulses of 150-fs Duration ; Opt. lett. 1991, 16, 1016-1018. [11] Spence, D. E.; Evans, J. M.; Sleat, WE.; Sibbett, W.; Allen, J. E. Regeneratively Initiated Self-Mode-Locked Ti: Sapphire Laser ; Opt. Lett. 1991, 16, 176-1764. [1] Sarukura, N.; Ishida, Y.; Nakano, H. Generation of 50- Fsec Pulses From a Pulse-Compressed, Cw, Passively Mode-Locked Ti: Sapphire Laser ; Opt. Lett. 1991, 16, 153-155. [13] French, P.; Williams, J.; Taylor, J. Femtosecond Pulse Generation from a Titanium-Doped Sapphire Laser using Nonlinear External Cavity Feedback ; Opt. Lett. 1989, 14, 686-688. [14] French, P. M. W.; Noske, D. U.; Rizvi, N. H.; Williams, J. A. R.; Taylor, J. R. Characterisation of a Cw Titanium- Doped Sapphire Laser Mode-Locked with a Linear External Cavity ; Opt. comm. 1991, 83, 185-194. [15] Liu, Y. M.; Sun, K. W.; Prucnal, P. R.; Lyon, S. A. Simple Method to Start and Maintain Self-Mode-Locking of a Ti: Sapphire Laser ; Opt. lett. 199, 17, 119-11. [16] Emmerichs, U.; Bakker, H.; Kurz, H. Generation of High- Repetition Rate Femtosecond Pulses Tunable in the Midinfrared ; Opt. comm. 1994, 111, 497-501.