FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Similar documents
0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Review of the Riemann Integral

We will begin by supplying the proof to (a).

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

lecture 16: Introduction to Least Squares Approximation

MTH 146 Class 16 Notes

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

Convergence rates of approximate sums of Riemann integrals

Sequence and Series of Functions

Course 121, , Test III (JF Hilary Term)

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Math 104: Final exam solutions

POWER SERIES R. E. SHOWALTER

The Definite Integral

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

Riemann Integration. Chapter 1

Limit of a function:

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

The Weierstrass Approximation Theorem

Approximate Integration

( ) dx ; f ( x ) is height and Δx is

Riemann Integral and Bounded function. Ng Tze Beng

Fourier Series and Applications

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

y udv uv y v du 7.1 INTEGRATION BY PARTS

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

1.3 Continuous Functions and Riemann Sums

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

1 Tangent Line Problem

Limits and an Introduction to Calculus

Review of Sections

Things I Should Know In Calculus Class

Supplemental Handout #1. Orthogonal Functions & Expansions

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

Linear Programming. Preliminaries

Crushed Notes on MATH132: Calculus

MAS221 Analysis, Semester 2 Exercises

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

denominator, think trig! Memorize the following two formulas; you will use them often!

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Convergence rates of approximate sums of Riemann integrals

The total number of permutations of S is n!. We denote the set of all permutations of S by

3.7 The Lebesgue integral

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

MATRIX ALGEBRA, Systems Linear Equations

9.5. Alternating series. Absolute convergence and conditional convergence

The Reimann Integral is a formal limit definition of a definite integral

Important Facts You Need To Know/Review:

Probability for mathematicians INDEPENDENCE TAU

Chapter 25 Sturm-Liouville problem (II)

General properties of definite integrals

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems

Quadrature Methods for Numerical Integration

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

Orthogonal functions - Function Approximation

Topic 4 Fourier Series. Today

Basic Limit Theorems

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Elementary Linear Algebra

CITY UNIVERSITY LONDON

MA123, Chapter 9: Computing some integrals (pp )

DIGITAL SIGNAL PROCESSING LECTURE 5

Solutions to Problem Set 7

Graphing Review Part 3: Polynomials

Unit 1. Extending the Number System. 2 Jordan School District

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

Advanced Calculus Test File Spring Test 1

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Frequency-domain Characteristics of Discrete-time LTI Systems

Chapter 7 Infinite Series

5.1 - Areas and Distances

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Ideas of Lebesgue and Perron Integration in Uniqueness of Fourier and Trigonometric Series By Ng Tze Beng

Math 140B - Notes. Neil Donaldson. September 2, 2009

Definite Integral. The Left and Right Sums

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Name: Period: Date: 2.1 Rules of Exponents

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

Abel Resummation, Regularization, Renormalization & Infinite Series

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Continuous Functions

Transcription:

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the fuctios tht we will be delig with, these series re i sese equl to f. Before we do so, we eed some termiology d itroduce clss of fuctios.. Piecewise cotiuous d piecewise smooth fuctios We will be usig the followig ottio: c + mes c d > c, c mes c d < c. For fuctio f() we will use the followig f(c + ) = lim c + f() d f(c ) = lim c f() provided tht the bove limits eist d re fiite. A fuctio f is sid to be piecewise cotiuous o the closed itervl [, b] if there eit fiitely my poits such tht: c = < c < c < < c < c = b f is cotiuous i ech ope itervl (c j, c j ), for j =,, ; f( + ), f(b ) eist d for j =,,, the limits f(c j ) d f(c+ j ) eist. Hece, f is cotiuous everywhere ecept possibly t fiite umber of poits where it hs jump discotiuities. The spce of piecewise cotiuous fuctios o [, b] will be deoted by C p[, b]. Emple. Cosider the fuctio + if < < ; f() = if < < ; if < The f C p[, ]. Iside the itervl, the oly discotiuities of f re t d Dte: Februry 3, 6.

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES y Figure. Piecewise cotiuous. We hve f( + ) =.5, f( ) =, f( + ) =, f( ) = f( + ) =, f( ) =. Emple. Cosider the fuctio y Figure. Not piecewise cotiuous { if < ; f() = if. The iside discotiuity of f is t =. Becuse lim f() = (ot fiite), the f / C p([, ]. A fuctio f is sid to be piecewise smooth o closed itervl [, b] if f is piecewise cotiuous o [, b] d f is lso piecewise cotiuous o [, b]. This mes tht f () eists d is cotiuous everywhere i (, b) ecept possibly t fiite umber of poits. Moreover, t ech poit where f is discotiuous the oe sided limits of f eist d re fiite. The spce of piecewise cotiuous o [, b] will be deoted by C p[, b]. Emple 3. The fuctio f() = is piecewise smooth o [, 5]. It is cotiuous o [, 5] d its derivtive eists everywhere ecept t =. At, we hve f (+) = d f ( ) =. Emple 4. The fuctio f() = { if < ; ( ) /3 if < <. is piecewise cotiuous but it is ot piecewise smooth. The fuctio is piecewise

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES 3 y Figure 3. Piecewise cotiuous but ot piecewise smooth cotiuous becuse f( + ) =, f( ) =, d t =, it hs jump discotiuity (f( ) = d f( + ) = ). The derivtive f is f () = for < < d f () = 3( ) /3 for < <, The derivtive f is ot piecewise cotiuous becuse f ( ± ) re ot fiite (the fuctio f hs cusp t = ). A fuctio f is sid to be piecewise cotiuous (respectively piecewise smooth) o the whole rel lie R if f is piecewise cotiuous (resp. piecewise smooth) o ech closed itervl [, b] R. Remrk. Note tht if f C p[, b], the f is itegrble o [, b]. Tht is, b f()d is fiite umber. Ideed, with c < c < < c the jump discotiuities of f, we hve b f()d = c c f()d + c c f()d + + c c f()d d ech itegrl o the right is fiite becuse withi the limits of itegrtio, the fuctio is bouded d cotiuous.. Eve d odd fuctios A fuctio f is sid to be eve (respectively odd) fuctio if f( ) = f() (resp. f( ) = f()) i domi of f. Note tht it follows from the defiitio tht the domi of eve or odd Figure 4. Grphs of eve d odd fuctios fuctio eeds to de symmetric with respect to R. Tht is, if is i the domi, the ( ) is lso i the domi. The grph of eve fuctio is symmetric with

4 FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES respect to the y-is d the grph of odd fuctio is symmetric with respect to the origi. Whe itegrtig eve or odd fuctios, it is useful to use the followig property Lemm. If f C p[ A, A] is eve fuctio, the A A f()d = If f C p[ A, A] is odd fuctio, the A A Proof. For eve fuctio f, we hve A A f()d = = = = A A A A f()d + A f()d =. A f( u)d( u) + f(u)du + f()d A f()d A f()d. f()d (substitutio u = ) f()d (use f eve) A logous rgumet c be pplied whe f is odd. Remrk. I leve it s eercise for you to prove tht the product of two eve fuctios is eve; two odd fuctios is eve; d the product of eve d odd fuctio is odd. Thtis Eve Eve = Eve Odd Odd = Eve Eve Odd = Odd 3. Periodic fuctios Recll tht fuctio f is sid to be periodic with period T (T > ) if f( + T ) = f( T ) = f() i domi of f. This implies i prticulr tht if is i the domi of f, the + kt is lso i the domi of f for every iteger k d f( + kt ) = f(). y Figure 5. Grph of periodic fuctio, T =

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES 5 Emple. For emple, the fuctios si d cos re -periodic d t is -periodic. I geerl, if ω is costt, the si(ω) d cos(ω) hve period T = /ω. Emple. Deote by [ ] the gretest iteger fuctio. Thus, for R, [] the gretest iteger less or equl th. For istce, [.7] =, [ 5] =, [] = 3, y Figure 6. The step fuctio [] [.] =, [ 7] = 3, etc. Note tht [ ] stisfies the property [+] = []+ for ever R. y Figure 7. The swtooth fuctio: [] The fuctio f defied by f() = [] (the frctiol prt of ), lso clled the swtooth fuctio, is piecewise smooth i R d periodic with period T = f( + ) = ( + ) [ + ] = + ([] + ) = [] = f(), R. Emple 3. (Trigulr wve fuctio) I leve it s eercise for you to check tht the fuctio f defied by [ ] f() = + is cotiuous d periodic with period T =. A importt property of periodic fuctios is the followig. Theorem Let f be piecewise cotiuous i R d periodic with period T. The T f()d = +T f()d, R

6 FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES y Figure 8. The trigulr wve fuctio Proof. Cosider the fuctio H() defied for R by H() = +T prove the Theorem, we eed to show tht H is costt. We rewrite H s H() = f()d + +T f()d = +T f()d f()d. f()d. To We c compute the derivtive H () by usig the Fudmetl Theorem of Clculus d fid H () = f( + T ) f() = becuse f is T -periodic. H gives H costt. 4. Orthogolity of fuctios We defie ier product <, > i the spce Cp[, b] of piecewise cotiuous fuctios o [, b] by < f, g >= b f()g()d, for f, g C p[, b] The orm of fuctio f Cp[, b] is defied f = ( / b < f, f > = f() d). { if < < Emple. Let f() =, g() =, d h() = if < <. Note tht h() = for > d h() = for <. I Cp[, ], we hve < f, g >= < f, h >= < g, h >= ( f = ( g = ( h = f()g()d = d = ()d + / d) = d + / d) = ( )d + d = d = 3 4d) / = 5 d = + = 3

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES 7 Two fuctios f, g C p[, b] re sid to be orthogol if < f, g >=. Tht is, f d g re orthogol if b f()g()d =. A set of fuctios S C p[, b] is orthoorml if the elemets of S re mutully orthogol d ech elemet of S hs orm. Tht is, < f, g >= for every f, g S, f g f = for every f S. Emple. The fuctios f() = d g() = ( ) re orthogol i Cp[, ] sice, < f, g >= ( )( ) d = 4 ( )4 = = =. The set S = {f, g} is orthogol but it is ot orthoorml becuse ( / f = ( ) d) = 3 ( / g = ( ) d) 4 = 5 However, if we replce f d g by f () = f() f = 3 f() d g () = g() g = We obti the set S = {f, g } which is orthoorml i C p[, ]. 5. The trigoometric system The followig trigoometric idetities will be used soo cos A cos B = cos(a + B) + cos(a B) cos A si B = si(a + B) si(a B) si A si B = cos(a B) cos(a + B) cos A = cos(a) + si A = cos(a) 5 g() The trigoometric system over the itervl [, ] (or over y itervl of legth ) cosists of the fuctios, cos, si, cos(), si(),, cos(k), si(k),, k Z + Lemm. The trigoometric system is orthogol over [, ]. Proof. We eed to verify tht the followig ier products re zero. <, si(k) >=<, cos(k) >= k Z + < cos(k), si(l) >= k, l Z + < cos(k), cos(l) >=< si(k), si(l) >= k, l Z +, k l We hve for k Z + <, si(k) >= si(k)d = ( cos(k) ) cos(k) cos = = k k

8 FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES for k, l Z + d k l, we use oe of the bove trig idetities to get Whe k = l, we hve < cos(k), si(l) > = < cos(k), si(k) >= For k, l Z + d k l, we hve cos(k) si(l)d = (si(k + l) si(k l))d = ( ) cos(k + l) cos(k l) k + l k l = < si(k), si(l) > = si(k)d = si(k) si(l)d cos(4k) + cos 4k = (cos(k + l) cos(k l))d = ( ) si(k + l) si(k l) k + l k l = The verifictio of the remiig idetities is left s eercise. Lemm. The orm of the trig fuctios o [, ] re: Proof. We hve =, cos(k) = si(k) =. = d = cos(k) = cos (k)d = ( = + si(k) ) = 4k si(k) = si (k)d = ( = si(k) 4k As cosequece of the two lemms we hve ) = + cos(k) cos(k) Corollry. The followig system is orthoorml over [, ]:, si, cos si k,,, cos k, =. As we will see lter the trigoometric system forms bsis for the spce of piecewise cotiuous d -periodic fuctios.

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES 9 6. Fourier series of -periodic fuctios Let f Cp(R) d -periodic, we would like to ssocite to the fuctio f series + cos() + b si() i such wy tht t ech poit where f is cotiuous the vlues of f d the series re the sme: f( ) = + cos( ) + b si( ). A immedite questio is the followig. If give fuctio f hs such represettio, how c we fid the coefficiets,, b, i terms of f? The swer is ot relly difficult if we ssume tht we c iterchge the summtio d the itegrtio. The by usig the orthogolity of the trigoometric system, we would get < f, >= Therefore, To fid d b : d + cos()d + si()d = = < f, > = f()d. < f, cos > = <, cos > + < cos(), cos > +b < si(), cos > = < cos, cos >= cos = < f, si > = <, si > + < cos(), si > +b < si(), si > Hece Similr rgumets give = b < si, si >= b si = b < f, cos > = = < f, si > b = = < f, cos k > k = cos k = < f, si k > b k = si k = We hve therefore estblished the ssocitio f() cos d ; f() si d. f() cos(k)d ; f() si kd. f() + cos() + b si()

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES for -periodic fuctio f Cp(R). The ssocited series is clled the Fourier series of f. The coefficiets re give by = k = b k = f()d f() cos(k)d for k =,, f() si(k)d for k =,, Remrk. We hve worked the itegrtios over the itervl [, ]. Becuse of the -periodicity, we could hve used y itervl of legth. Hece, for y rel umber, we lso hve = k = b k = + + + f()d f() cos(k)d for k =,, f() si(k)d for k =,, I my situtios with symmetry, it is useful to tke =. We hve the = k = b k = f()d f() cos(k)d for k =,, f() si(k)d for k =,, Remrk 3. By usig properties of eve d odd fuctios, we hve the followig. If F is eve, the the fuctios F () cos(k) re eve d the fuctios F () si(k) re odd. If G is odd, the the fuctios G() cos(k) re odd d the fuctios G() si(k) re eve. The Fourier coefficiets of eve fuctio F re = k = b k = F ()d = F () cos(k)d = F ()d F () si(k)d = for k =,, The Fourier coefficiets of odd fuctio G re = k = b k = G()d = G() cos(k)d = for k =,, G() si(k)d = F () cos(k)d for k =,, G() si(k) for k =,,

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES The Fourier series of eve fuctio F d odd fuctio G re: F () + cos(), G() b si(), = b = 7. Emples We give emples of Fourier series of some simple fuctios F () cos()d ; G() si()d. Emple. Let f() be the -periodic fuctio defied o [, ] by f() =. Hece the grph of f is the trigulr wve. Note tht f is eve fuctio d Figure 9. Trigulr wve so its Fourier series cotis oly the cosie terms (b = for every Z + ). The coefficiets of the cosies re: Hece, = d = ; = cos()d = ( ) cos() = = () =, d = (() ) = ( si() ) = cos() si() d if = k (eve) 4 (k + ) if = k + (odd) We hve obtied the ssocited Fourier series of f o [, ] 4 j= cos(j + ) (j + ). Emple. Let f() be the -periodic fuctio defied o [, ] by { if < < ; f() = if < <. Hece the grph of f is the rectgulr wve. Note tht f is odd fuctio d

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES Figure. Rectgulr wve so its Fourier series cotis oly the sie terms ( = d = for every Z + ). The coefficiets of the sies re: ( ) cos() b = si()d = = () Hece, b = ( () ) = if = k (eve) 4 (k + ) if = k + (odd) We hve obtied the ssocited Fourier series of f o [, ] f() 4 si(j + ). (j + ) Emple 3. Let f() be the -periodic fuctio defied o [, ] by { if < < ; f() = if < <. j= The grph of f is the give below. The fuctio f is either eve or odd d so Figure. Grph of f its Fourier series cotis sies d cosies terms. Its Fourier coefficiets re: We hve = = b = f()d = f() cos()d = f() si()d = f() 4 j= d = ; cos(j + ) (j + ) + cos()d = () si()d = () j= () j si j j..

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES 3 8. The comple epoetil form of Fourier series Recll tht the cosie d sie fuctio c be epressed i terms of the epoetil s { e iθ = cos θ + i si θ e iθ = cos θ i si θ Now we c rewrite the trigoometric series cos θ = eiθ + e iθ si θ = eiθ e iθ i + cos + b si, = i eiθ e iθ with rel coefficiets i terms of these epoetils. For this, we use cos + b si e i + e i e i e i = ib = ib e i + + ib e i = c e i + c e i where c deotes the comple cojugte of c For -periodic, R-vlued fuctio fuctio f C p(r), we hve with c f() c + c e i + c e i = ib = f() (cos i si ) d = f()e i d This comple form of the Fourier is equivlet to the oe give with cosies d sies. I my pplictios it is esier d more coveiet to use the comple form. Note tht the bove ssocitio tke the form f() c + Re ( c e i) where Re(C) deotes the rel prt of the comple umber C. Emple. Let f be the -periodic fuctio defied over the itervl (, ) by { if < < f() = if < <

4 FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To compute the Fourier coefficiets, we use itegrtio by prts. e i d = e i e i i i d = e i i e i e i ( i) + ( i) d = e i i = i e i We fid the the Fourier coefficiets c = d for, c = = (i e i = e i ( i) + e i f()e i d = + e i + e i ( i) 3 + C d = 6 i e i 3 e i d i e i 3 It gives ( c = () () + i + ) () 3 The Fourier series of f is therefore 6 + Re [ c e i] ) + C We c rewrite the Fourier series i terms of cosie d sie. First ( c e i = () () cos + ) () 3 si + ( ( () () +i si + ) ) () 3 cos The Fourier series of f is: 6 + () ( () cos + ) () 3 si Emple. Let f be the -periodic fuctio defied o [, ] s f() = e. The -th Fourier coefficiet of f is c = = e e i d = ( ) e ( i) = e ( i) d i = = (e ) i = (e ) + i + Hece (fter clcultio), we fid [ ] Re(c e i ) = (e ) cos si + +

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES 5 The Fourier series of f is therefore, e c + Re(c e i ) [ ] (e ) cos si + + + 9. Eercises I ech eercise, fid the fourier series of the -periodic fuctio f tht is give by Eercise. f() = for < <. Eercise. f() = for < <. Eercise 3. f() = cos { if < < Eercise 4. f() = if < < Eercise 5. f() = cos Eercise 6. f() = si { if < < Eercise 7. f() = si if < < { /(d) if < d Eercise 8. f() = if d < < with d positive costt. Eercise 9. f() = e d for < <, where d positive costt Eercise. f() = cosh for < <. Eercise. f() = cosh for < <. Eercise. f() = cosh for < <. { ( )/(d) if < d Eercise 3. f() = with d positive costt. if d < <