drops in motion Frieder Mugele the physics of electrowetting and its applications Physics of Complex Fluids University of Twente

Similar documents
Electrowetting based microliter drop tensiometer. Arun G. Banpurkar* Kevin Nichols and Frieder Mugele

Wetting of complex functional surfaces

Electrowetting. space and ε l the liquid dielectric constant, Eq. (1) can be written as. γ = ε 0ε l 2d V2. (2)

Analysis and Measurement of Forces in an Electrowetting-Driven Oscillator

Electrowetting on dielectrics on lubricating fluid based slippery surfaces with negligible hysteresis

Dielectrowetting: Statics and Dynamics

Frieder Mugele. Physics of Complex Fluids. University of Twente. Jacco Snoeier Physics of Fluids / UT

Microfluidics 2 Surface tension, contact angle, capillary flow

Resonant Oscillations of Liquid Marbles

Contact angle saturation in electrowetting: Injection of ions into the surrounding media

T. B. Jones / University of Rochester 1

Fundamentals of Droplet Flow in Microfluidics. R.B. Fair Department of Electrical and Computer Engineering Duke University Durham, N.C.

ON-CHIP DOUBLE EMULSION DROPLET ASSEMBLY USING ELECTROWETTING-ON-DIELECTRIC AND DIELECTROPHORESIS

Effects and applications of surface tension for fluidic MEMS components

How Electrostatic Fields Change Contact Angle in Electrowetting

Smart lens: tunable liquid lens for laser tracking

Liquid lens based on electrowetting: a new adaptive component for imaging applications in consumer electronics

Electrowetting on a semiconductor

STATIC AND SPONTANEOUS ELECTROWETTING

emulsions, and foams March 21 22, 2009

Lecture 7 Contact angle phenomena and wetting

Electrocoalescence a multi-disiplinary arena

Surface and Interfacial Tensions. Lecture 1

Droplet-based DEP microfluidics - High speed liquid actuation on planar substrates and factors influencing picolitre droplet formation

Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation

Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations

A phase field model for the coupling between Navier-Stokes and e

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Supplementary Materials for

University of Central Florida. Roxana Shabani University of Central Florida. Doctoral Dissertation (Open Access) Electronic Theses and Dissertations

Frequency-Dependent Electromechanics of Aqueous Liquids: Electrowetting and Dielectrophoresis

Characterization of electrowetting systems for microfluidic applications

Instabilities in the Flow of Thin Liquid Films

films in low voltage electrowetting

Forces and movement of small water droplets in oil due to applied electric field

Numerical Modeling of 3D Electrowetting Droplet Actuation and Cooling of a Hotspot

An OpenFOAM-based electro-hydrodynamical model

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun

Jacco Snoeijer PHYSICS OF FLUIDS

Low Voltage Reversible Electrowetting Exploiting Lubricated Polymer. Honeycomb Substrates. Published: Applied Physics Letters 104 (2014)

WELL-DESIGNED MEMS devices take advantage of the

Experimental Studies of Liquid Marbles and Superhydrophobic Surfaces

Contents. 2. Fluids. 1. Introduction

Capillary force actuation

Dr. Todd Satogata (ODU/Jefferson Lab) Wednesday, February

Changes of polymer material wettability by surface discharge

Non-Faradaic Impedance Characterization of an

The Shape of a Rain Drop as determined from the Navier-Stokes equation John Caleb Speirs Classical Mechanics PHGN 505 December 12th, 2011

dewetting driving forces dewetting mechanism? dewetting dynamics? final equilibrium state: drops with θ = θ Y

Four-phase merging in sessile compound drops

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 1

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Single cell impedance spectroscopy label free analysis of cells

Dynamiczna kontrola separacji ładunków elektrostatycznych w układach miękkiej materii

Supplementary Figure 1 Extracting process of wetting ridge profiles. a1-4, An extraction example of a ridge profile for E 16 kpa.

The evaporation of sessile droplets onto solid surfaces : experiments and simulations of the contact line pinning-depinning

Thin Solid Films. Reliable and low-voltage electrowetting on thin parylene films. Manjeet Dhindsa a,b,1, Stein Kuiper b,2, Jason Heikenfeld a,

High-Mobility n-channel Organic Field Effect Transistors based on Epitaxially Grown C 60 Films

arxiv: v2 [cond-mat.soft] 4 May 2018

Fast Biofluid Transport of High Conductive Liquids Using AC Electrothermal Phenomenon, A Study on Substrate Characteristics

contact line dynamics

Absorption of gas by a falling liquid film

The Wilhelmy balance. How can we measure surface tension? Surface tension, contact angles and wettability. Measuring surface tension.

Electrohydromechanical analysis based on conductivity gradient in microchannel

Unique Fluid Ensemble including Silicone Oil for the Application Bull. Korean Chem. Soc. 2008, Vol. 29, No Articles

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Simulation of Evaporating Droplets on AFM-Cantilevers

MPIKG Public Access Author Manuscript

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

ESS 5855 Surface Engineering for. MicroElectroMechanicalechanical Systems. Fall 2010

Numerical simulation for a droplet fission process of electrowetting on dielectric device

Laplace Barriers for Electrowetting Thresholding and Virtual Fluid Confinement

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces.

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

ECE185 LIQUID CRYSTAL DISPLAYS

Lab 1: Numerical Solution of Laplace s Equation

ENERGY HARVESTING TRANSDUCERS - ELECTROSTATIC (ICT-ENERGY SUMMER SCHOOL 2016)

Reaction at the Interfaces

Bursting Drops in Solids Caused by High Voltages

Modelling and analysis for contact angle hysteresis on rough surfaces

SUPPLEMENTARY INFORMATION

A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform Electric Field

Wetting & Adhesion on Soft Surfaces Young s Law is dead long live Young s Law. Eric Dufresne

Electrowetting: from basics to applications

DLVO interaction between the spheres

NUMERICAL SIMULATION OF ELECTROWETTING USING ELECTRIC BODY FORCE DENSITY AND SURFACE TENSION

Wetting and Adhesion: Manipulating Topography and Surface Free Energy

ALCT Measurement Principles

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France

Piezo Theory: Chapter 1 - Physics & Design

Direct Oil Recovery from Saturated Carbon Nanotube Sponges

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

Capacitance. PHY2049: Chapter 25 1

Particle-stabilized foams

Electrowetting with Contact Line Pinning: Computational Modeling and Comparisons with Experiments

Formation of Droplets and Bubbles in a Microfluidic T-junction. Scaling and Mechanism of Break-Up. Supplementary Information

Transcription:

drops in motion the physics of electrowetting and its applications Frieder Mugele Physics of Complex Fluids niversity of Twente 1

electrowetting: the switch on the wettability voltage

outline q q q q q introduction electrowetting basics q historic note q origin of the EW effect q electromechanical model q contact angle saturation physical principles and challenges of EW devices FNdamental fluid dynamics with EW q contact angle hysteresis in EW q contact line motion in ambient oil q electrowetting driven drop oscillations and mixing flows q channel-based microfluidic systems with EW functionality conclusion 3

the origin 1875: Annales de Chimie et de Physique english translation: in Mugele&Baret J. Phys. Cond. Matt. 17, R705-R774 (005) Gabriel Lippmann (1845-191) Nobel prize 1908 4 1891: interferometric color photography

Lippmann s experiment on electrocapillarity σ Hg/HSO4 voltage [Daniell] First law the capillaryconstantat the mercury/diluted sulfuricacid interfaceis a function of the electrical differenceat the surface. σ f ( ) 5

effective surface tension H SO 4 capillary depression (Jurin): p L σ cosθ R Y ρ g h ph h h h( ) σ σ ( ) σ α 0 Hg ------ build-up of a Debye layer electrostatic energy/area 1 Eel c double layer capacitance: ε c 0 ε λ D total free energy (per unit area): F( ) σ ( ) σ c 0 no dielectric! 6

modern electrowetting equation on dielectric basic setup: σ lv - - - - - - σ sl σ sv conductive liquid insulator counter electrode Berge 1993 Electrowetting on dielectric (EWOD) 7 electrowetting equation: cos( θ( )) cosθ Y electrowetting number 1 ε 0ε dσ h lv water in silicone oil low voltage: parabolic behavior high voltage: contact angle saturation advancing receding

examples of EW-curves electrowetting equation: cos( θ ( )) cosθ Y 1 ε 0 dσ ε lv cos θ () cos θ().0 0,8 1.5 0,4 0,0 1.0-0,4 0.5-0,8 0.0 0 5 10 15 0 8000 16000 4000 /γ wo (10 5 V m/n) α (V ) water gelatin (%; 40 C) milk SDS (0.7%) Triton-x 100 (0.1%) Triton SDS milk gelatin water σ macro [mj/m ]] 38 0 18 7 4.4 8 Banpurkar et al., Langmuir 008 Teflon AF-coated ITO glass in silicone oil; AC voltage

EW as microdrop tensiometer Liquid Interface (Temperature 3 o C) Planar Electrode γ wo (EW drop tensiometer (mn/m) Interdigitated Electrode γ wo (Du Noüy ring) (mn/m) H O/silicone oil (θ Y 169 O ) calibration calibration 38± 0. H O/ mineral oil (168 O ) 48.8± 0.5 47.3± 0.7 48.0± 0. H O/ air (6 O ) 7.4 ±0.6 7.0±0. 7.6± 0.5 H O/ n-hexadecane (169 O ) 5.9±0.7 48.5±0.6 53.3±0.5 Aqu. Gelatin ( % )/ mineral oil (160 O ) 4.1±0.6 4.8±0.7 3.3 ± 0.4 Aqu. Gelatin ( %)/silicone oil (167 O ) 0.1±0.8 0.4±0.8 0. ± 0.5 Aqu. SDS (0.7 %)/ silicone oil (165 O ) 7.5± 0.3 7.5± 0.8 7.0± 0.4 Aqu. CTAB (0.1 %)/mineral oil (164 O ) 6.5± 0.5 7.5± 0.8 7.1 ± 0.4 Aqu. Triton X-100 (0.1%)/ silicone oil (163 O ) 4.7±0.3 5.6±0.5 4.4 ± 0.4 Aqu. Glycerin (50% )/ silicone oil (169 O ) 3.8±0.8 35.0±0.7 33.0 ± 0.5 Milk / silicone oil (167 O ) 19.4±0.7 18.6±0.9 17.9± 0.1 yeast protein (1% )/ silicone oil (167 O ) 0.0±0.5 15.7±0.7 18.7± 1.0 9 Banpurkar et al., Langmuir 008 interfacial tension measurements for nl drops consistent with bulk values

origin of EW G i σ i A i E r 1 r r D EdV σ A i i i ε 0ε d r A sl Maxwell stress: p el ε r E( ) 0 r εε 0 σ lv Alv σ sl σ d σ sl eff sv A sl? p σ lv κ ε r E( ) 0 r modified Young equation modified capillary equation 10

local equilibrium surface profiles D geometry iterative calculation: initial profile (fixed θ A ) field distribution (FEM) force balance refined profile 1. local force balance p el ( x) 0 r ε! E( ) γ lv r h ( ) r 1 h ( ) p cap r ( ). free energy minimization ~ A η! F cosθ L ds ( ) min ( ) dv φ ε Y sl r B 11

numerical results surface profiles curvature / Maxwell stress x 1 liquid air η (0,.,.4,, 1.) log P el 10 10 0 η ν -0,4 ε 1: ε : -0,6-0,8 0,4 0,5 0,6 0,7 α / π θ Y / π Buehrle et al. PRL 003 Bienia et al. EuroPhysLett 006 1 0 0 1 3 h/d ins q local contact angle Young s angle q divergent curvature near contact line: κ ~ p el ~ h ν ; -1 < ν < 0 q range of surface distortions: d ins no contact angle saturation (in -dim model) 10-4 10-10 0 log h/d ins

experimental verification η 0 η 0.5 η 1 d 10µm d 50µm d 150µm 13 Mugele, Buehrle, J.Phys.Cond.Matt 007

relation between local and apparent c.a. D geometry apparent c.a. cos( θ ( )) cosθ η Y local c.a. θ B θ Y 14 apparent c.a. follows EW equation

equivalence of force balance & energy minimization S f x, el 0 ρ E dz x εε 0 d x total force: (per unit length) f x T Σ xk n k da Maxwell stress tensor: εε 0 d σ lv η T.B. Jones force / unit length σ lv independent of drop shape! f el σ sl 15 σ sv

reconciliation ε 0ε σ i Ai d i r macroscopic picture A sl F i σ E r i A i 1 r r D EdV Maxwell stress: microscopic picture p el ε r E( ) 0 r εε 0 σ lv Alv σ sl σ d σ sl eff sv A sl h>> d electrical force / unit length fel 0 p p σ el ( z) dz modified Young equation modified capillary equation lv ε κ r E( ) 0 r 16 both pictures are equivalent on a scale >> d ins

contact angle saturation: the mystery of EW what causes deviations from EW equation at high voltage? advancing receding cos( θ ( )) cosθ Y 1 ε 0ε dσ lv diverging electric fields can cause dielectric breakdown of coating! break down safe operation (Seyrat, Heyes, J. Appl. Phys. 001) 17

refined version: local breakdown at contact line potential magnitude of field self-consistent calculation of field and surface configuration local breakdown upon calculated EW curve including saturation exceeding V T (Papathanasiou et al. Appl. Phys. Lett. 005, J. 18Appl. Phys. 008, Langmuir 009)

contact line instability d Coulomb explosion: balance of capillary energy and electrostatic energy top view: water-silanized glass ; f 00 Hz 100 µm 19 Berge et al. Eur. Phys. J. B 1999; Mugele, Herminghaus Appl. Phys. Lett. 00

AC- vs. DC-EW: frequency-dependence EW equation: cos( θ( )) cosθ Y 1 ε 0ε dσ lv RMS σ 0.7 µs/cm 70V rms f AC 0.3 10 khz 0

finite-conductivity effects in AC-EW -0,7 5 µs/cm 0 µs/cm 300 µs/cm -0,7-0,7 ( 1mM NaCl) cos θ -0,8-0,8 f 0, 100kHz -0,8-0,9-0,9-0,9-1,0 0 000-1,0 0 000 0 (V ) -1,0 0 000 1 conducticvity

modeling equivalent circuit ~ 0 droplet ~ 0 insulator loc loc << 0 due to Ohmic losses f ( ω) loc σ 0 1 ω 1 R l C d α f cosθ ( ω) (cosθ cosθ Y cosθ Y ε ε σ ) 0 d fσ ( ω) lvd 0 α 1 ω R l 0 C d

results α f(ω) (10-4 V - ) 1, 0,8 0,4 µs/cm 5.1 µs/cm 17 µs/cm 300 µs/cm 0,0 1000 10000 100000 ω / (πσ) (khz m/s) few mm of salt perfect conductivity (up to a few tens of khz) 3

summary electrowetting basics contact angle reduction arises from minimization of interfacial and electrostatic energy (maximum of capacitance) equilibrium shape is determined by local balance of Maxwell stress and Laplace pressure q local contact angle Young s angle q diverging curvature near contact line q equivalence of force balance and effective surface tension approach on scales >> d contact angle saturation arises from non-linearities in diverging electric fields at contact line q c.a. saturation can be minimized by use of high quality substrates, AC voltage, ambient oil. 4