Solutions to Problems from Chapter 2

Similar documents
0 for t < 0 1 for t > 0

Lecture #6: Continuous-Time Signals

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

S Radio transmission and network access Exercise 1-2

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Physics 2A HW #3 Solutions

PART V. Wavelets & Multiresolution Analysis

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

e t dt e t dt = lim e t dt T (1 e T ) = 1

5.1-The Initial-Value Problems For Ordinary Differential Equations

REAL ANALYSIS I HOMEWORK 3. Chapter 1

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

4.8 Improper Integrals

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

A Kalman filtering simulation

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

1.0 Electrical Systems

3. Renewal Limit Theorems

September 20 Homework Solutions

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

Chapter Direct Method of Interpolation

SOME USEFUL MATHEMATICS

MTH 146 Class 11 Notes

Contraction Mapping Principle Approach to Differential Equations

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

LAPLACE TRANSFORMS. 1. Basic transforms

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Convolution. Lecture #6 2CT.3 8. BME 333 Biomedical Signals and Systems - J.Schesser

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Average & instantaneous velocity and acceleration Motion with constant acceleration

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

( ) ( ) ( ) ( ) ( ) ( y )

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.

IX.2 THE FOURIER TRANSFORM

graph of unit step function t

14. The fundamental theorem of the calculus

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ]

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

Neural assembly binding in linguistic representation

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Sirindhorn International Institute of Technology Thammasat University

1. Introduction. 1 b b

Mathematics 805 Final Examination Answers

How to prove the Riemann Hypothesis

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

ECE Microwave Engineering

Chapter 1. Chapter 1 1

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Version 001 test-1 swinney (57010) 1. is constant at m/s.

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Math 221: Mathematical Notation

6.2 Transforms of Derivatives and Integrals.

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

FM Applications of Integration 1.Centroid of Area

Think of the Relationship Between Time and Space Again

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

A Note on Fractional Electrodynamics. Abstract

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

EECE 301 Signals & Systems Prof. Mark Fowler

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

Chapter 2: Evaluative Feedback

CHAPTER 2 Signals And Spectra

EE 301 Lab 2 Convolution

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Probability, Estimators, and Stationarity

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

A LOG IS AN EXPONENT.

1. Consider a PSA initially at rest in the beginning of the left-hand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor.

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

Characteristics of Linear System

For the reaction, R P, the is given by,

CBSE 2014 ANNUAL EXAMINATION ALL INDIA

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

EECE 301 Signals & Systems Prof. Mark Fowler

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

UNIVERSITY OF TRENTO MEASUREMENTS OF TRANSIENT PHENOMENA WITH DIGITAL OSCILLOSCOPES. Antonio Moschitta, Fabrizio Stefani, Dario Petri.

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

A new model for limit order book dynamics

Some Inequalities variations on a common theme Lecture I, UL 2007

Transcription:

Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5 u()-.5sgn() u ()-.5sgn() h u ()-.5sgn() no deined.5.5 () (b) ( c) Figure. Problem. This signl is presened in Figure.. shed lines denoe priculr signls. u(+ ) u(-+ ) p () Figure. Problem.3 This signl is presened in Figure.3. The dshed lines denoe priculr signls. p () sgn() u() sgn() - - - - () - -3 Figure.3 Noe h he impornce o he usge o he Heviside uni sep uncion in digil iler design nd smpling is discussed in recen pper: L. Jckson, A Correcion o Impulse Invrince, IEEE Signl Processing Leers, Vol. 7, 73 75,.

CHAPTER Problem.4 The required signls re presened respecively in Figures.4,b,c,d. () u(-+) ( c) r(-+3) 3 (b) u(--) (d) r(--) - - - Figure.4 Problem.5 The grphs o he required signls re ploed respecively in Figures.5,b,c,d. () () (b) () r(-) u(-3) 3 -r(-+) 3 4 -u(-4) 3() ( c) (d) () 4 r() u(-) -r(--) 3 4 - -u(-5) Figure.5

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC Problem.6 The signl () u( + ) + u( ) r( ) + r( 3) is presened in Figure.6 wih dshed lines denoing priculr signls. ()u(+)+u(-)-r(-)+r(-3) r(-3) u(+) u(-) - 3 -r(-) Figure.6 Problem.7 Srigh orwrd soluions re given by () () r() r( ) + r( ); (b )() r( ) r( 3) u( ) (c) 3() r( ) r( ) u( ) Ploing hese uncions we obin he desired grphs. Noe h oher soluions re possible since he presenion is no unique. Problem.8 See commens mde in he soluions o Problem.7. In his problem, one o possible severl soluions is given by () u() r( ) + r( 3) + u( 5) The corresponding signls re ploed in Figure.7 using dshed lines. ()u()-r(-)+r(-3)+u(-5) r(-3) u() u(-5) 3 4 5 -r(-) Figure.7 3

CHAPTER Problem.9 This signl is ploed using MATLAB nd presened in Figure.8. Commen: Noe h he MATLAB uncion sepun(-k,k); k-4::6; does no produces he correc resul. 4 3 [k] p4[k ] r[k]u[ k+] Signl [k] 4 3 3 4 5 6 iscree ime k Figure.8 Problem. This signl is ploed in Figure.9..8.6 [k] ri4*u[ k+] p[k ]*u[k ].4. Signl [k].8.6.4. 4 3 3 4 5 6 iscree ime k Figure.9 4

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC Problem. [3] sinc[3] r[3 + 5] + 6 [3]p 4 [3] sinc[3] r[] + sin 3 3 Problem. Using he noion rom Secion., he nlyicl represenion o he discree-ime ringulr pulse is 8> < m[k] ; k m ; k m + m k; m k m k; k m Noe h m, s deined in ormul (.4) is n even ineger. This signl cn be represened in erms o discreeime rmp signls s ollows m[k] h m r k m i h r[k] + r k + m i Problem.3 I is known rom (.9) h () (m) ()d () m (m) () On he oher hnd, we hve () (m) ()d () m () (m) ()d () m (m) () due o he c h d m ()d m () m d m ()d m or. I ollows h or m even he righ-hnd sides o he bove wo expressions re idenicl, which implies h (m) () (m) (); m n. For m odd we hve () m (m) () () m (m) () (m) (), which implies h (m) () (m) (); m n +. Problem.4 Sring wih he inegrl () () ( )d () d d ( )gd ssuming h >, nd using he chnge o vribles s, we obin + d d () d + For <, he sme derivions imply () () ( )d d d ()d + () ()d + () ()d () () ; > + () ()d () ; < 5

The second inegrl CHAPTER () () (( ))d or > nd wih he chnge o vribles s ( ) produces Similrly or <, we hve Problem.5 Sring wih he inegrl () () (( ))d + () ()d () () ( ); > () (n) ( )d + () ()d () ( ); < () dn d n ( )gd ssuming h >, nd using he chnge o vribles s, we obin + n dn d n () d + d n n n For <, he sme derivions imply The inegrl n + (n) ()d n () n (n) d n ()d ; > () (n) ( )d n + (n) ()d + (n) ()d n () n (n) () (n) (( ))d () dn d n (( ))gd ; < is evlued similrly, ssuming h >, nd using he chnge o vribles s ( ), which leds o + n dn d n () d d n n + d n ()d n + (n) ()d n () n (n) ( ); > 6

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC For <, he sme derivions imply () (n) (( ))d n + (n) ()d n () n (n) ( ); < Problem.6 Using he ormul derived in Problem.5 we hve + e 3 () (3 + 5)d 3() d d 8e 3 9j 5 3 3 9 e 3 5 3 7e 5 The second inegrl ccording o he ormul derived in Problem.4 is zero. This cn be lso jusiied by direc inegrion s 4 () ( + )d 4 4 () d ( )d 4 ()gd 4 d d() 4()j Problem.7 By he siing propery o he del impulse uncion, or given uncion g() (noe we use here o denoe requency), we hve g()()d g() I insed o () we use (!), wih!, we obin rom (.7), in his cse he requency scling propery h g()( )d g() This leds o he conclusion h (!) ( ) (). Problem.8 The curren in his elecricl circui or he consn volge E nd wih no iniil volge on he cpcior is given by i() E R e RC ; In he cse when R!, he mgniude o o he curren ends o ininiy nd he durion o he curren ends o zero since lim ne RC! ; >. Hence, he circui curren ends o he del impulse uncion. R! Problem.9 The curren in his elecricl circui is given by i() C dv C() d C " ; < < " ; > " When "!, he mgniude o he curren ends o ininiy nd is wih ends o zero. Hence, he curren ends o he del impulse uncion. 7

Problem. + sin() + e h() () + 3 CHAPTER + 3( ) + 4 () ( )id + 4() () () + 3 4 + sin h i () () + 3( ) + 4 () ( ) d + e 4 4 + cos () e 4 Problem. sin() + e h (3) () () ( )id h i () (3) () () ( ) d () 3 (3) () () () () 3 sin () cos () e cos () sin () + e cos () + sin () e Problem. () 5 e 4 u()( 4)d e 44 u(4) e 6 (b) 5 3 e ( 6)d since ( 6) is ouside o he inegrion limis (c) 3 5 5 e sin ( 3)( 5)d ()( 5)d (5) e sin () 3 (d) 3 5 5 e ( + 3)d ()( + 3)d (3) e 3 3 3 Problem.3 cos ()( ) + i e 3h () ( ) + ( 3) d + + n ()( 3)d + 4 3 5( + )d cos ()( ) + () 9e 3 + e3( 3 ) + + 5 ( ) + 9e 3 + e( 9 ) + 5 Problem.4* e ( ) + h i sin (( )) () ( ) + ( ) 3 e ( ) + () sin (( )) + sin (( )) + 4 n (4) + 5 e ( ) + 4 d + + n ()( 4)d + 4 5( + )d n (4) + 5 8

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC Noe h he irs erm ws evlued using he resul esblished in (.3), h is ()( ) ( ) nd h we used lso he ollowing resul (see (.)) (b)( )d b + () d b ; > Problem.5 () e 5 sin ( + 4)( ) ()( ) ()( ) e 5 sin (6)( ) (b) () k cos [k ][k 4] [k][k 4] [4][k 4] () 4 cos [7][k 4] Problem.6 () The scled nd shied recngulr pulse signls re deined by ; p(3) 3, 3 3 ; ; p(3 ) 3, 3 ; elsewhere ; elsewhere p4(4( 5)) ; 4( 5), :5 + 5 :5 + 5, 4:5 5:5 ; elsewhere The plos o hese signls re presened in Figure.. p (3) p (3-) p (4(-5)) 4 -/3 /3 /3 4 5 6 Figure. (b) The nlyicl expressions or he scled nd shied sep signls re given by ; u( 3) 3, 3 ; 3 + ; u(3 + ), 3 ; elsewhere ; elsewhere Grphicl presenions o hese signls re given in Figure.. u(-3) u(-3+) /3 Figure. 9

CHAPTER Problem.7 The rmp signl is deined by r() u(); > nd r() ; <. Using his deiniion, we hve Noe lso h r(4( + )) 4( + )u(4( + )); 4( + ) >, < ; elsewhere u(4( + )) ; 4( + ) >, < ; elsewhere u( ) The scled nd shied sep nd recngulr pulse signls re nlyiclly given by u(3 ) ; 3, 3 ; p ( 4) ; elsewhere The bove signls re ploed in Figure.. 4 8; < ; elsewhere ; 4, 5 3 ; elsewhere r(-4(+)) 4 u(-3-) p (--4) -4-3 - - -4 - -/3 - -4-3 - () (b) ( c) Figure. Problem.8 Generlized derivives or he signls deined in Problem.5 re given by () 8 >< ; < undened; ; < < 3 ; ( 3); 3 ; > 3 () 8 >< ; < undened; ; < < 4 ( 4); 4 ; > 4 3 () 8 >< ; < undened; ; < < ; ( ); ; > 4 () 8 >< ; < undened; ; < < 5 ( 5); 5 ; > 5 The generlized derivive or he signl deined in Problem.6 is given by () 8 >< ; < ( + ); ; < < ( ); ; < < 3 undened; 3 ; > 3

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC Problem.9 Using he derivive produc rule nd he propery o he del impulse uncion, which ses h ()( ) ( )( ), we obin () u( ) + ( + )( ) sin ()u( 3) + cos ()( 3) 4e 4 sin () + e 4 cos () u( ) + 4( ) sin ()u( 3) + cos (3)( 3) + e 4 (cos () 4 sin ()) Problem.3 The grphs re presened in Figures.3 nd.4 ()r(-)-r()u(-+)+p () 4 r(-) u(-+) p () 4 - - -r()u(-+) -r() Figure.3 r(--) () u(+) -3 - - 3 4 -u(-+) - Figure.4 -r(-4) The corresponding generlized derivives re given by () 8>< ; ( + ); ; < < undened; ; < < undened; ; > ; () 8 >< ; < undened; ; < < ( + ); < < ( ); ; < < 4 undened; 4 > 4

CHAPTER Problem.3 Signls () nd (g) re nicusl since hey re dieren rom zero or negive ime. Signls (b), (c), (d), (e), (), nd (h) re cusl since ll o hem re equl o zero or <. Problem.3 The required generlized derivives o he signls in FIGURE. re given by () () 8 >< ; < undened; ; < < ( + ) ( ) ( )( ) ( ); ; < < ; ( + ) ( ) ( )( ) ( ); ; < < 3 (3 + ) (3 ) ( ())( 3) ( 3); 3 ; 3 < (b) () 8 >< ; < undened; ; < < ( + ) ( ) ( )( ) ( ); ; < < 3 undened; 3 ; 3 < < 4 (4 + ) (4 ) ( )( 4) ( 4); 4 ; 4 < These generlized derivives re grphiclly represened in Figure.5. () () (b) () (-3) 3 3 - (-) - (-) - (-) - (-4) Figure.5 Problem.33 The regulr derivive d ()d is presened in Figure.6. The generlized derivive () conins, in ddiion, he impulse del uncions ( :3); ( :9); ( ). Noe h FIGURE x.y denoes igure rom he ex book nd Figure x.y denoes igure rom he soluion mnul.

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC d() d...3.4.5.6.7.8.9 - Figure.6 Problem.34 Since n inegrl is equl o he re beween he uncion (signl) nd he horizonl xis, we hve : : ()d + : : : : + : : : Hence, he signl inegrion hs smoohing eec. Problem.35 sin ()u()g cos ()u() + sin ()() cos ()u() + () cos ()u() sin ()u()g sin ()u()g cos ()u()g sin ()u() + () 3 sin ()u()g 3 4 sin ()u()g 3 4 sin ()u()g sin ()u() + ()g cos ()u() + () () n o cos ()u() + () () sin ()u() () + () () 3 sin ()u()g Problem.36 u()g () + u() () + u() u() u()g u()g u()g () 3 3 u()g u()g ()g () () 3

4 4 u()g 3 CHAPTER 3 u()g n o () () () () Problem.37 4 3 cos ()u()g cos ()u()g 3 cos ()u()g 4 cos ()u()g sin ()u() + cos ()() sin ()u() + () 3 cos ()u()g sin ()u() + ()g cos ()u() + () () cos ()u()g cos ()u()g 3 n n o cos ()u() + () () sin ()u() () + () () sin ()u() () + () () o cos ()u() () () + (3) () Problem.38 8 9 e u() e u() + e () e u() + () 8 e u()9 8 9 e u() 8 e u() + ()9 e u() + () + () () 3 8 9 e 3 u() 8 u()9 e n o e u() + () + () () 3 e u() + () + () () + () () 4 8 9 e 4 u() 3 8 u()9 e 3 n o 3 e u() + () + () () + () () 4 e u() + 3 () + () () + () () + (3) () Following he sme pern, we hve n 8 9 e u() n e u() + n () + n () () + + (n) () + (n) (); > n Problem.39 s() r() r( ) r () r ( ); 4

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC MATLAB PROBLEMS Problem.4 The surion signl is presened in Figure.7. This igure is obined vi he ollowing MATLAB code. >> lp; be; be/lp; >> -:; :; 3:; [ 3]; >> s[zeros(,),,be*ones(,9)] >> plo(,s) >> xlbel( Time ); ylbel( Surion signl ) >> grid; xis([-5 5.5.5]).5.5 Surion uncion.5.5 5 4 3 3 4 5 Time Figure.7 Problem.4 The shied discree-ime impulse del nd uni sep signls re presened in Figure.8..5 Shied del impulse signl.5.5 3 4 5 6 7 8 9 iscree ime.5 Shied sep signl.5.5 3 4 5 6 7 8 9 iscree ime Figure.8 This igure is obined vi he ollowing MATLAB code. >> k; k; k3; >> kk:k 5

CHAPTER >> del3[(k-k)] >> subplo(); plo(k,del3, * ) >> xlbel( iscree-ime ) >> ylbel( Shied del impulse signl ) >> grid; xis([ -.5.5]) >> k; sep[(k-k)>] >> subplo() >> plo(k,sep, * ) >> xlbel( iscree-ime ); ylbel( Shied sep signl ) >> grid; xis([ -.5.5]) Problem.4 For rel nd negive exponens <, he dmped sinusoidl signl decys oscillory o zero s ime increses. Such signl or is ploed in Figure.9() in he ime inervl rom o 5. For posiive vlues o he exponen, he dmped sinusoidl signl increses o ininiy s!. The considered signls is lso presened in Figure.9() or..4 Rel nd negive exponen.3....5.5.5 3 3.5 4 4.5 5 Time Rel nd posiive exponen 5 5.5.5.5 3 3.5 4 4.5 5 Time Figure.9 For complex conjuge vlues o, he signl is complex uncion h hs is rel nd imginry prs. For such signls we plo heir mgniude nd phse (ngle). The corresponding plos or + j, obined vi MATLAB, re presened in Figure.9(b). I cn be observed h or his complex signl he mgniude decys o zero, bu he phse is periodic uncion o ime. In Chper 3, where he Fourier rnsorm o signls will be presened, we will sudy complex signls in deil. The igures in his problem re obined vi he ollowing MATLAB code. >> :.:5 >> % Sinusiodl signl wih rel nd negive exponen >> lm- >> exp(lm*).*sin(*) >> igure() >> subplo(); plo(,) >> xlbel( Time ); ylbel( Rel nd negive exponen ) >> % Sinusiodl signl wih rel nd posiive exponen >> lm >> exp(lm*).*sin(*) >> subplo(); plo(,) 6

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC >> xlbel( Time ); ylbel( Rel nd posiive exponen ) >> % Sinusoidl signl wih complex conjuge exponen >> :.:5 >> lm-+j* >> ccexp(lm*).*sin(*) >> igure () >> subplo(); plo(,bs(cc)) >> xlbel( Time ); ylbel( Mgniude ) >> subplo(); plo(,ngle(cc)) >> xlbel( Time ); ylbel( Phse ).7.6.5 Mgniude.4.3.. 5 5 Time 4 Phse 4 5 5 Time Figure.9b Problem.43 The rin o recngulr pulses is ploed in Figure.. This igure is obined vi he ollowing MATLAB code. >> u.;t.5;-.3:.:4.3; >> pusepun(,-u/)-sepun(,u/) >> rinpupu >> or i:8 >> rinpurinpu+sepun(,i*t-u/)-sepun(,i*t+u/) >> end >> plo(,rinpu) >> xlbel( Time ); ylbel( Trin o recngulr pulses ) >> xis([-.3 4.3 -.5.5]); grid Problem.44 The coninuous- nd discree-ime sinc signls re ploed in Figure.. This igure is obined vi he ollowing MATLAB code. >> -5:.:5; >> consincsinc(*-3) >> subplo(); plo(,consinc) >> xlbel( Coninuous ime ); ylbel( Coninuous sinc signl ); grid >> T.; kt-5:t:5; >> discsincsinc(*kt+) >> subplo(); plo(kt,discsinc, o ) >> xlbel( iscree ime ); ylbel( iscree sinc signl ); grid 7

CHAPTER.5 Trin o recngulr pulses.5.5.5.5.5 3 3.5 4 Time Figure. Coninuous sinc signl.8.6.4...4 5 4 3 3 4 5 Coninuous ime.8 iscree sinc signl.6.4...4 5 4 3 3 4 5 iscree ime Figure. Problem.45 The considered signl is ploed in Figure.. This igure is obined vi he ollowing MATLAB code. >> -:.:7; >> sepun(,)+sepun(,5)-(-).*sepun(,)+(-3).*sepun(,3); >> plo(,) >> xlbel( Coninuous-ime ) >> ylbel( Coninuous-ime signl rom FIGURE.8 ); xis([- 7 - ]) 8

SOLUTION MANUAL or LINEAR YNAMIC SYSTEMS AN SIGNALS by ORAN GAJIC.5 Coninuousime signlrom FIGURE.8.5.5.5 3 4 5 6 7 Coninuous ime Figure. 9