The Nucleosynthesis of Chemical Elements

Similar documents
In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

Stellar Interior: Physical Processes

THE NUCLEUS: A CHEMIST S VIEW Chapter 20

Big Bang Nucleosynthesis

James Maxwell ( )

An introduction to Nuclear Physics

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Primordial (Big Bang) Nucleosynthesis

Nuclear Reactions and Astrophysics: a (Mostly) Qualitative Introduction

The origin of the light elements in the early Universe

Nuclear Physics and Nuclear Reactions

Stellar processes, nucleosynthesis OUTLINE

Q1. Describe, in as much detail as you can, the life history of a star like our Sun

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Stars and their properties: (Chapters 11 and 12)

NJCTL.org 2015 AP Physics 2 Nuclear Physics

How to Build a Habitable Planet Summary. Chapter 1 The Setting

Zach Meisel, PAN 2016

Interactions. Laws. Evolution

Chapter CHAPTER 11 ORIGIN OF THE ELEMENTS

IB Test. Astrophysics HL. Name_solution / a) Describe what is meant by a nebula [1]

Astronomy 104: Stellar Astronomy

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

MAJOR NUCLEAR BURNING STAGES

Nucleosynthesis. W. F. McDonough 1. Neutrino Science, Tohoku University, Sendai , Japan. (Dated: Tuesday 24 th April, 2018)

GraspIT Questions AQA GCSE Physics Space physics

Name Chemistry-PAP Per. Notes: Atomic Structure

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Stellar Explosions (ch. 21)

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers

Nuclear Physics and Radioactivity

Particles in the Early Universe

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Stars IV Stellar Evolution

LIFE CYCLE OF A STAR

Nuclear Astrophysics - I

Comparing a Supergiant to the Sun

Study Sheet for Modern Physics

A Short History of the Universe. The universe in a grain of sand Particles and forces The Big Bang Early history of the universe Nucleosynthesis

1. Four different processes are described in List A. The names of these processes are given in List B.

Perspectives on Nuclear Astrophysics

Lecture 19 Big Bang Nucleosynthesis

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes

Nuclear Fission & Fusion

MODERN ASTROPHYSICS PCES 4.55

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018

Chapter 12: Nuclear Reaction

Atomic Structure. INSIDE the Nucleus: OUTSIDE the Nucleus:

ORIGIN OF THE ELEMENETS

Chapter 10. Section 10.1 What is Radioactivity?

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A.

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

LIFE CYCLE OF A STAR

Nuclear Astrophysics

: When electrons bombarded surface of certain materials, invisible rays were emitted

Astrophysical Nucleosynthesis

6. Atomic and Nuclear Physics

NSCI 314 LIFE IN THE COSMOS

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES

Life of a High-Mass Stars

Evolution of High Mass Stars

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

ASTR Midterm 1 Phil Armitage, Bruce Ferguson

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Chapter 18 Nuclear Chemistry

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Outline 8: History of the Universe and Solar System

Learning Outcomes 2. Key Concepts 2. Misconceptions and Teaching Challenges 3. Vocabulary 4. Lesson and Content Overview 5

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

What do the nuclei of different molybdenum isotopes have in common?

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 3. Radioactivity. Table of Contents

Origin of heavier elements, origin of universe

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Neutron-to-proton ratio

SOLAR SYSTEM, STABILITY OF ORBITAL MOTIONS, SATELLITES

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

SOURCES of RADIOACTIVITY

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time:

Planetary Nebulae White dwarfs

Uranium has two natural isotopes, uranium-235 and uranium-238. Use the correct answer from the box to complete the sentence.

Fission & Fusion Movie

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

Nobel prizes in nuclear and reactor physics. Szabolcs Czifrus Institute of Nuclear Techniques BME

Outline: Cosmological Origins. The true basics of life The age of Earth and the Universe The origin of the heavy elements Molecules in space

What Powers the Stars?

Section 12. Nuclear reactions in stars Introduction

Chapter 18. Nuclear Chemistry

Birth & Death of Stars

Forces and Nuclear Processes

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes

Transcription:

The Nucleosynthesis of Chemical Elements Dr. Adriana Banu, James Madison University January 22, Saturday Morning Physics 11

Big questions We knew for long time that our energy comes from Sun! 1.But what produces it in the Sun? Gravity (which governs planets motion)?! Chemical reactions like on Earth (fuel burning, explosions...)?! In the 1930s we got the answer: nuclear reactions! Namely fusion! What about the other stars?! 2. How were/are the chemical elements created? (nucleosynthesis) The answer is still: nuclear reactions! But which reactions?! How they proceed?! 3. Did nucleosynthesis stop, or continues today?

If in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? Everything is made of atoms. -Richard Feynman Nobel Prize in Physics, 1965 If you want to make an apple pie from scratch, you must first create the universe We are star-stuff - Carl Sagan

From Aristotle to Mendeleyev In search of the building blocks of the universe Greek philosophers 4 building blocks 18 th -19 th century Lavoisier, Dalton, water fire air earth distinction between compounds and pure elements atomic theory revived 92 building blocks (chemical elements) Periodic Table of Elements 1896 Mendeleyev

not to scale

Atom = nucleus + electrons -e (10-10 m) +Ze Nucleus = protons + neutrons (10-14 m)

Modern Alchemy : radioactivity 1896 Becquerel discovers radioactivity A. H. Becquerel Pierre Curie Marie Curie The Nobel Prize in Physics 1903 emission of radiation from atoms 3 types observed:, and transmutation (Helium)

Chart of the Nuclides ~ 3000 currently known nuclides ~ 270 stables only! ~ 7000 expected to exist Z 118 Sn 50 68 Color Key: Stable + emission - emission particle emission Spontaneous fission A Z X N N A chemical element (X) is uniquely identified by the atomic number Z! Nuclides that have the same Z but different N are called isotopes! Mass number: A = N + Z

Nuclear Masses and Binding Energy The binding energy is the energy required to dissasemble a nucleus into protons and neutrons. It is due to the strong nuclear force! M( Z, N ) = Zm + Nm - BE m p = proton mass, m n = neutron mass, m(z,n) = mass of nucleus with Z protons and N neutrons p n

Thanks to E=mc 2, tiny amounts of mass convert into huge energy release He-4 (2 protons + 2 neutrons) Radium-226 (88 protons + 138 neutrons) Radon-222 (86 protons + 136 neutrons) 1 kg of radium would be converted into 0.999977 kg of radon and alpha particles. The loss in mass is only 0.000023 kg = 23 mg! Energy = mc 2 = mass x (speed of light) 2 = 0.000023 x (3 x 10 8 ) 2 = 2.07 x 10 12 joules. Equivalent to the energy from over 400 tonnes of TNT!!! 1 kg Ra (nuclear) 4*10 5 kg TNT (chemical) 238 Pu

Modern Alchemy :nuclear fusion and fission The process through which a large nucleus is split into smaller nuclei is called fission. Fusion is the opposite! Fission and fusion are a form of elemental transmutation because the resulting fragments are not the same element as the original nuclei. Nuclear fusion occurs naturally in stars!

Nuclear Reactions A1 Z1 A2 X + Y A + B Z2 A3 Z3 A4 Z4 Conservation laws: A1 + A2 = A3 + A4 Z1 + Z2 = Z3 + Z4 (mass numbers) (atomic numbers) Amount of energy liberated in a nuclear reaction (Q-value): Qval = [(m1 + m2) (m3 + m4)]c 2 definition initial final Qval > 0: exothermic process (release of energy) in stars Qval < 0: endothermic process (absorption of energy)

Stability and Binding Energy Curve Qval >0 fission Qval >0 fusion Qval <0 fusion

What Is the Origin of the Elements?

Nucleosynthesis: the synthesis of Elements through Nuclear Reactions Two original proposals: (full) Big-Bang nucleosynthesis all elements formed from protons and neutrons sequence of n-captures and decays soon after the Big Bang Stellar nucleosynthesis elements synthesised inside the stars nuclear processes well defined stages of stellar evolution Alpher, Bethe & Gamow ( ) Phys. Rev. 73 (1948) 803 Burbidge, Burbidge, Fowler & Hoyle (B 2 FH) Rev. Mod. Phys. 29 (1957) 547 The Nobel Prize in Physics 1967 The Nobel Prize in Physics 1983 Which one is correct?

Big Bang Nucleosynthesis occurred within the first 3 minutes of the Universe after the primordial quark-gluon plasma froze out to form neutrons and protons BBN stopped by further expansion and cooling (temperature and density fell below those required for nuclear fusion) BBN explains correctly the observed mass abundances of 1 H (75%), 4 He (23%), 2 H (0.003%), 3 He (0.004%), trace amounts (10-10 %) of Li and Be, and no other heavy elements Mass stability gap at A=5 and A=8!!! BBN A = 8 No way to bridge the gap through sequence of neutron captures during BB A = 5

After that, very little happened in nucleosynthesis for a long time. temperature and density too small!!! It required galaxy and star formation via gravitation to advance the synthesis of heavier elements. matter coalesces to higher temperature and density Because in stars the reactions involve mainly charged particles, stellar nucleosynthesis is a slow process.

Stellar life cycle Interstellar gas BIRTH gravitational contraction Stars element mixing + metals DEATH explosion thermonuclear reactions energy production stability against collapse synthesis of metals

Hydrogen Burning slow or fast (explosive) H-burning almost 95% of all stars spend their lives burning the H in their core (including our Sun). Our Sun is a slow nuclear reactor (a fusion reactor we could not make!)

until hydrogen fuel is depleted the life time of our sun depends on the nuclear reaction rates life time of stars depends on their mass: at larger masses burn faster! We are lucky!

Helium Burning: Carbon formation BBN produced no elements heavier than Li due to the absence of a stable nucleus with 8 nucleons in stars 12 C formation set the stage for the entire nucleosynthesis of heavy elements How is Carbon synthesized in stars? T ~ 6*10 8 K and ~ 2*10 5 gcm -3 4 He + 4 He 8 Be 8 Be + 4 He 12 C 8 Be unstable ( ~ 10-16 s)

Helium Burning: Oxygen formation Oxygen production from carbon: 12 C + 4 He 16 O + Carbon consumption! Reaction rate is very small not all C is burned, but Oxygen production is possible and Carbon-based life became possible

Nucleosynthesis up to Iron A massive star near the end of its lifetime has onion ring structure Carbon burning T ~ 6*10 8 K ~ 2*10 5 gcm -3 12 C + 12 C - > 20 Ne + 4 He + 4.6 MeV 23 Na + 1 H + 2.2 MeV Neon burning T ~ 1.2*109 K ~ 4*10 6 gcm -3 20 Ne + - > 16 O + 4 He 20 Ne + 4 He - > 24 Mg + Oxygen burning T ~ 1.5*109 K ~ 10 7 gcm -3 16 O + 16 O - > 28 Si + 4 He + 10 MeV 31 P + 1 H + 7.7 MeV Silicon burning major ash: Fe T ~ 3*109 K ~ 10 8 gcm -3 stars can no longer convert mass into energy via nuclear fusion!

Nucleosynthesis beyond Iron

It was 987,000,000,000,000,000 MILES Away! 987 QUADRILLION MILES

Abundance of the Elements Features: 12 orders-of-magnitude span H ~ 75% He ~ 23% C U ~ 2% ( metals ) Almost 5 billion years ago, our solar system began the journey with its gravitation collapse If we look around us today, we can see what elements were in our interstellar cloud

Abundance of the Elements Data sources: Earth, Moon, meteorites, stellar (Sun) spectra, cosmic rays... Fe Features: 12 orders-of-magnitude span H ~ 75% He ~ 23% C U ~ 2% ( metals ) Au Abundance of elements and isotopes are UNIQUE finger prints of various cosmic processes. To interpret and understand them, diverse and vast nuclear physics knowledge is needed!!! Not fully solved!

U.S. Nuclear Science [Today and for the Next Decade] General goal: Explain the origin, evolution, and structure of the visible matter of the universe the matter that makes up stars, planets, and human life itself.

The Science Physics of Nuclei and Nuclear Astrophysics What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? What is the origin of simple patterns in complex nuclei? What is the nature of neutron stars and dense nuclear matter? What is the origin of the elements in the cosmos? What are the nuclear reactions that drive stars and stellar explosions?

Nuclear Physics for Astrophysics experiments in laboratory to learn about nuclear reaction in stars Two big problems in nuclear astrophysics: 1. - reactions in stars involve(d) radioactive nuclei use RNB 2. - very small energies and very small cross sections indirect methods Measurement at lab energies Comparison with (reaction) calculations Extract (nuclear structure) information Compare with direct measurements Calculate nuclear reaction probability

My research highlights

The first sources of light: Population III stars Astrophysical motivation First stars about 400 million yrs.

Fate of Massive Pop III Stars G G Collapse Black Hole pp-i,ii,iii H 3 dynamic instability T c 5 10 7 K crit 0.02 g cm -3 CNO, rp H G Explode

Interest in 12 N(p, ) 13 O M. Wiescher et al., 1989, Ap.J., 343 : Hot pp chains and rap-process chains in low-metallicity objects pp-i: p(p,e + )d(p, ) 3 He( 3 He,2p) 4 He pp-ii: 7 Be(e -, ) 7 Li(p, ) 4 He pp-iii: 7 Be(p, ) 8 B( + ) 8 Be( ) 4 He process material from pp cycles into CNO nuclei pp-iv: 7 Be(p, ) 8 B(p, ) 9 C( + ) 9 B(p) 8 Be( ) 4 He pp-v: 7 Be(, ) 11 C( + ) 11 B(p,2 ) 4 He rap-i: 7 Be(p, ) 8 B(p, ) 9 C(,p) 12 N(p, ) 13 O( + ) 13 N(p, ) 14 O rap-ii: 7 Be(, ) 11 C(p, ) 12 N(p, ) 13 O( + ) 13 N)p, ) 14 O rap-iii: 7 Be(, ) 11 C(p, ) 12 N( + ) 12 C(p, ) 13 N(p, ) 14 O rap-iv: 7 Be(, ) 11 C(,p) 14 N(p, ) 15 O

Experimental Setup for 12 N(p, ) 13 O study via ( 12 N, 13 O) proton transfer reaction (Faraday Cup) Er - det. 12 C D E - det. (PSSD) 12 N Melamine target

My research @ Madison Radiation Laboratory (JMU) astrophysical motivation: nucleosynthesis of heavy proton-rich elements beyond iron by photoactivation technique using an electron linear accelerator Measurements of photoneutron reactions induced by activation of a target (stable nucleus), i. e. (,n) reaction rates Medical linac High-resolution Germanium detectors

RESOURCES: Existing facilities for research in Nuclear Astrophysics (North America) TAMU LENA/TUNL HI S/TUNL 1. Michigan State University/NSCL 2. Oak Ridge National Laboratory/HRIBF 3. Argonne National Laboratory/ATLAS 4. Lawrence Livermore National Laboratory/NIF 5. TRIUMF/ISAC (Canada) 6. University of Notre Dame/KN Van de Graaf accelerator 7. Yale University/WNSL 8. Florida State University/Super-FN tandem/resolut

Overview of main astrophysical processes

Present and Future Direction in Physics of Nuclei and Nuclear Astrophysics Rare Isotope Beams

Producing radioactive nuclei Protons Neutrons RADIOACTIVE NUCLEI Actually, made by nuclear reactions with stable nuclei: Long lived to very short lived isotopes can be produced and used to produce secondary reactions in laboratory

RIB Facilities (Operating or Under Construction)

FRIB-facility for rare isotope beams Ions of all elements from protons to uranium accelerated Where you could work (after 2018)

What is the origin of the elements in the cosmos? p process FRIB reach Big Bang Stellar burning neutrons NAS report: Connecting Quarks with the cosmos 11 questions for the 21 st century how where the elements from iron to uranium made?

In summary

Messages to take away Nuclear reactions play a crucial role in the Universe: 1. they provide the energy in stars including that of the Sun. 2. they produced all the elements we depend on. 3. nucleosynthesis is on-going process in our galaxy There are ~270 stable nuclei in the Universe. By studying reactions between them we have produced ~3000 more (unstable) nuclei. There are ~4000 more (unstable) nuclei which we know nothing about and which will hold many surprises and applications. Present techniques are unable to produce them in sufficient quantities. It will be the next generation of accelerators and the next generation of scientists (why not some of you?!) which will complete the work of this exciting research field.