Chapter 8 (More on Assumptions for the Simple Linear Regression)

Similar documents
This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

EXST7015: Estimating tree weights from other morphometric variables Raw data print

Chapter 11 : State SAT scores for 1982 Data Listing

The program for the following sections follows.

unadjusted model for baseline cholesterol 22:31 Monday, April 19,

Odor attraction CRD Page 1

Handout 1: Predicting GPA from SAT

1) Answer the following questions as true (T) or false (F) by circling the appropriate letter.

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" = -/\<>*"; ODS LISTING;

5.3 Three-Stage Nested Design Example

SAS Procedures Inference about the Line ffl model statement in proc reg has many options ffl To construct confidence intervals use alpha=, clm, cli, c

Descriptions of post-hoc tests

COMPREHENSIVE WRITTEN EXAMINATION, PAPER III FRIDAY AUGUST 26, 2005, 9:00 A.M. 1:00 P.M. STATISTICS 174 QUESTION

EXST Regression Techniques Page 1. We can also test the hypothesis H :" œ 0 versus H :"

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3.1 through 3.3

Comparison of a Population Means

Failure Time of System due to the Hot Electron Effect

Lecture 3. Experiments with a Single Factor: ANOVA Montgomery 3-1 through 3-3

Lecture notes on Regression & SAS example demonstration

Week 7.1--IES 612-STA STA doc

Answer Keys to Homework#10

Assignment 9 Answer Keys

Booklet of Code and Output for STAC32 Final Exam

Biological Applications of ANOVA - Examples and Readings

EXST 7015 Fall 2014 Lab 08: Polynomial Regression

Topic 2. Chapter 3: Diagnostics and Remedial Measures

Lecture 1 Linear Regression with One Predictor Variable.p2

Single Factor Experiments

This is a Split-plot Design with a fixed single factor treatment arrangement in the main plot and a 2 by 3 factorial subplot.

BE640 Intermediate Biostatistics 2. Regression and Correlation. Simple Linear Regression Software: SAS. Emergency Calls to the New York Auto Club

STATISTICS 479 Exam II (100 points)

3rd Quartile. 1st Quartile) Minimum

Lecture 11: Simple Linear Regression

T-test: means of Spock's judge versus all other judges 1 12:10 Wednesday, January 5, judge1 N Mean Std Dev Std Err Minimum Maximum

Overview Scatter Plot Example

Statistical Methods I

EXST 7015 Fall 2014 Lab 11: Randomized Block Design and Nested Design

Stat 302 Statistical Software and Its Applications SAS: Simple Linear Regression

STAT 350: Summer Semester Midterm 1: Solutions

ANALYSIS OF VARIANCE OF BALANCED DAIRY SCIENCE DATA USING SAS

STAT 350. Assignment 4

3 Variables: Cyberloafing Conscientiousness Age

PubH 7405: REGRESSION ANALYSIS SLR: DIAGNOSTICS & REMEDIES

Booklet of Code and Output for STAC32 Final Exam

SPECIAL TOPICS IN REGRESSION ANALYSIS

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis jmding/math475/index.

A Little Stats Won t Hurt You

Analysis of Variance. Source DF Squares Square F Value Pr > F. Model <.0001 Error Corrected Total

SAS Commands. General Plan. Output. Construct scatterplot / interaction plot. Run full model

IES 612/STA 4-573/STA Winter 2008 Week 1--IES 612-STA STA doc

ANALYSES OF NCGS DATA FOR ALCOHOL STATUS CATEGORIES 1 22:46 Sunday, March 2, 2003

Overview. Prerequisites

Chapter 1 Linear Regression with One Predictor

Statistics 512: Solution to Homework#11. Problems 1-3 refer to the soybean sausage dataset of Problem 20.8 (ch21pr08.dat).

Statistics for exp. medical researchers Comparison of groups, T-tests and ANOVA

Introduction to Design and Analysis of Experiments with the SAS System (Stat 7010 Lecture Notes)

STAT 3A03 Applied Regression Analysis With SAS Fall 2017

Multicollinearity Exercise

Outline. Review regression diagnostics Remedial measures Weighted regression Ridge regression Robust regression Bootstrapping

Residuals from regression on original data 1

STA 302 H1F / 1001 HF Fall 2007 Test 1 October 24, 2007

a. The least squares estimators of intercept and slope are (from JMP output): b 0 = 6.25 b 1 =

data proc sort proc corr run proc reg run proc glm run proc glm run proc glm run proc reg CONMAIN CONINT run proc reg DUMMAIN DUMINT run proc reg

General Linear Model (Chapter 4)

Exst7037 Multivariate Analysis Cancorr interpretation Page 1

Lecture 4. Checking Model Adequacy

7.3 Ridge Analysis of the Response Surface

STOR 455 STATISTICAL METHODS I

Simple Linear Regression

In many situations, there is a non-parametric test that corresponds to the standard test, as described below:

In Class Review Exercises Vartanian: SW 540

Scenarios Where Utilizing a Spline Model in Developing a Regression Model Is Appropriate

Answer to exercise 'height vs. age' (Juul)

610 - R1A "Make friends" with your data Psychology 610, University of Wisconsin-Madison

4.8 Alternate Analysis as a Oneway ANOVA

Stat 427/527: Advanced Data Analysis I

Repeated Measures Part 2: Cartoon data

Covariance Structure Approach to Within-Cases

Topic 14: Inference in Multiple Regression

Analysis of variance and regression. April 17, Contents Comparison of several groups One-way ANOVA. Two-way ANOVA Interaction Model checking

Forestry 430 Advanced Biometrics and FRST 533 Problems in Statistical Methods Course Materials 2010

The SAS program I used to obtain the analyses for my answers is given below.

R 2 and F -Tests and ANOVA

SIMPLE LINEAR REGRESSION

Data Set 8: Laysan Finch Beak Widths

Lecture 10: 2 k Factorial Design Montgomery: Chapter 6

1 A Review of Correlation and Regression

ssh tap sas913, sas

Effect of Centering and Standardization in Moderation Analysis

Z score indicates how far a raw score deviates from the sample mean in SD units. score Mean % Lower Bound

Chapter 8 Quantitative and Qualitative Predictors

Lecture 2 Linear Regression: A Model for the Mean. Sharyn O Halloran

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

Statistics for exp. medical researchers Regression and Correlation

Booklet of Code and Output for STAC32 Final Exam

CHAPTER 2 SIMPLE LINEAR REGRESSION

ST 512-Practice Exam I - Osborne Directions: Answer questions as directed. For true/false questions, circle either true or false.

Statistics 5100 Spring 2018 Exam 1

STAT 3A03 Applied Regression With SAS Fall 2017

Lecture 18: Simple Linear Regression

Transcription:

EXST3201 Chapter 8b Geaghan Fall 2005: Page 1 Chapter 8 (More on Assumptions for the Simple Linear Regression) Your textbook considers the following assumptions: Linearity This is not something I usually consider an explicit assumption, but obviously an investigator believes that the model he is using is correct. A scatter plot can help to determine if this assumption is valid. Constant variance The residuals represent variance, and they get pooled into a single estimate of variance. As with ANOVA, we assume that they all represent the same variance or pooling would not produce a good estimate of variance. Normality The regression should be normally distributed at each value of Xi, and the pooled residuals should be normally distributed. This assumption is needed for testing and placing confidence intervals. Independence Each observation should be unrelated to the other observations. We will examine a dataset and determine, to the extent possible, if the assumptions are met. The dataset is CASE0802 in the text. The data gives the time in minutes to breakdown of 76 samples of an insulating fluid subjected to different constant voltages. First, plot the data and try a regression and examine the residual plot. 1 *********************************************************; 2 *** Time in minutes to breakdown of 76 samples of an ***; 3 *** insulating fluid subjected to different constant ***; 4 *** voltages. ***; 5 *********************************************************; 6 7 dm'log;clear;output;clear'; 8 options nodate nocenter nonumber ps=512 ls=99 nolabel; 9 ODS HTML style=minimal rs=none 9! body='c:\geaghan\current\exst3201\fall2005\sas\fluids01.html' ; NOTE: Writing HTML Body file: C:\Geaghan\Current\EXST3201\Fall2005\SAS\Fluids01.html 10 11 Title1 ''; 12 filename input1 'C:\Geaghan\Current\EXST3201\Datasets\ASCII\case0802.csv'; 13 14 data Fluids; infile input1 missover DSD dlm="," firstobs=2; 15 input TIME VOLTAGE GROUP $; 16 label Time = 'Breakdown time (minutes)' 17 Voltage = 'Voltage(kV)'; 18 LogTime = log(time); 19 datalines; NOTE: The infile INPUT1 is: File Name=C:\Geaghan\Current\EXST3201\Datasets\ASCII\case0802.csv, RECFM=V,LRECL=256 NOTE: 76 records were read from the infile INPUT1. The minimum record length was 16. The maximum record length was 31. NOTE: The data set WORK.FLUIDS has 76 observations and 4 variables. NOTE: DATA statement used (Total process time): 20 run;

EXST3201 Chapter 8b Geaghan Fall 2005: Page 2 21 22 PROC PRINT DATA=Fluids; TITLE2 'Raw data Listing'; RUN; NOTE: There were 76 observations read from the data set WORK.FLUIDS. NOTE: The PROCEDURE PRINT printed page 1. NOTE: PROCEDURE PRINT used (Total process time): Raw data Listing Obs TIME VOLTAGE GROUP LogTime 1 5.79 26 GROUP 1 1.75613 2 1579.52 26 GROUP 1 7.36488 3 2323.70 26 GROUP 1 7.75092 4 68.85 28 GROUP 2 4.23193 5 108.29 28 GROUP 2 4.68481 6 110.29 28 GROUP 2 4.70311 7 426.07 28 GROUP 2 6.05460 8 1067.60 28 GROUP 2 6.97317 9 7.74 30 GROUP 3 2.04640 10 17.05 30 GROUP 3 2.83615 11 20.46 30 GROUP 3 3.01847 12 21.02 30 GROUP 3 3.04547 13 22.66 30 GROUP 3 3.12060 14 43.40 30 GROUP 3 3.77046 15 47.30 30 GROUP 3 3.85651 16 139.07 30 GROUP 3 4.93498 17 144.12 30 GROUP 3 4.97065 18 175.88 30 GROUP 3 5.16980 19 194.90 30 GROUP 3 5.27249 20 0.27 32 GROUP 4-1.30933 21 0.40 32 GROUP 4-0.91629 22 0.69 32 GROUP 4-0.37106 23 0.79 32 GROUP 4-0.23572 24 2.75 32 GROUP 4 1.01160 25 3.91 32 GROUP 4 1.36354 26 9.88 32 GROUP 4 2.29051 27 13.95 32 GROUP 4 2.63548 28 15.93 32 GROUP 4 2.76820 29 27.80 32 GROUP 4 3.32504 30 53.24 32 GROUP 4 3.97481 31 82.85 32 GROUP 4 4.41703 32 89.29 32 GROUP 4 4.49189 33 100.59 32 GROUP 4 4.61105 34 215.10 32 GROUP 4 5.37110 35 0.19 34 GROUP 5-1.66073 36 0.78 34 GROUP 5-0.24846 37 0.96 34 GROUP 5-0.04082 38 1.31 34 GROUP 5 0.27003 39 2.78 34 GROUP 5 1.02245 40 3.16 34 GROUP 5 1.15057 41 4.15 34 GROUP 5 1.42311 42 4.67 34 GROUP 5 1.54116 43 4.85 34 GROUP 5 1.57898 44 6.50 34 GROUP 5 1.87180 45 7.35 34 GROUP 5 1.99470 46 8.01 34 GROUP 5 2.08069 47 8.27 34 GROUP 5 2.11263 48 12.06 34 GROUP 5 2.48989 49 31.75 34 GROUP 5 3.45789 50 32.52 34 GROUP 5 3.48186 51 33.91 34 GROUP 5 3.52371 52 36.71 34 GROUP 5 3.60305 53 72.89 34 GROUP 5 4.28895 54 0.35 36 GROUP 6-1.04982 55 0.59 36 GROUP 6-0.52763 56 0.96 36 GROUP 6-0.04082 57 0.99 36 GROUP 6-0.01005 58 1.69 36 GROUP 6 0.52473 59 1.97 36 GROUP 6 0.67803 60 2.07 36 GROUP 6 0.72755 61 2.58 36 GROUP 6 0.94779 62 2.71 36 GROUP 6 0.99695 63 2.90 36 GROUP 6 1.06471 64 3.67 36 GROUP 6 1.30019 65 3.99 36 GROUP 6 1.38379 66 5.35 36 GROUP 6 1.67710 67 13.77 36 GROUP 6 2.62249 68 25.50 36 GROUP 6 3.23868 69 0.09 38 GROUP 7-2.40795 70 0.39 38 GROUP 7-0.94161 71 0.47 38 GROUP 7-0.75502 72 0.73 38 GROUP 7-0.31471 73 0.74 38 GROUP 7-0.30111 74 1.13 38 GROUP 7 0.12222 75 1.40 38 GROUP 7 0.33647 76 2.38 38 GROUP 7 0.86710 23 24 options ps=52 ls=111; 25 proc plot data=fluids; 26 plot Time * VOLTAGE; TITLE2 'Plot of the raw data'; run; 27 28 Title2 'Initial fit of the raw data'; 29 options ps=512 ls=111; NOTE: There were 76 observations read from the data set WORK.FLUIDS. NOTE: The PROCEDURE PLOT printed page 2. NOTE: PROCEDURE PLOT used (Total process time):

EXST3201 Chapter 8b Geaghan Fall 2005: Page 3 Plot of the raw data Plot of TIME*VOLTAGE. Legend: A = 1 obs, B = 2 obs, etc. TIME 2500 + A 2000 + A 1500 + A 1000 + 500 + A A D C B D A 0 + A E J R O H ---+--------------+--------------+--------------+--------------+--------------+--------------+-- 26 28 30 32 34 36 38 VOLTAGE 30 PROC REG DATA=Fluids lineprinter; ID group; 31 TITLE3 'Simple Regression with REG'; 32 MODEL Time = VOLTAGE; 33 output out=next r=resid p=yhat; 34 RUN; 34! OPTIONS PS=45; 35 TITLE3 'Plot of residuals'; NOTE: The data set WORK.NEXT has 76 observations and 6 variables. NOTE: The PROCEDURE REG printed page 3. NOTE: PROCEDURE REG used (Total process time): Initial fit of the raw data Simple Regression with REG The REG Procedure Model: MODEL1 Dependent Variable: TIME Number of Observations Read 76 Number of Observations Used 76

EXST3201 Chapter 8b Geaghan Fall 2005: Page 4 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 1 2150408 2150408 24.27 <.0001 Error 74 6557345 88613 Corrected Total 75 8707754 Root MSE 297.67898 R-Square 0.2470 Dependent Mean 98.55776 Adj R-Sq 0.2368 Coeff Var 302.03504 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 1886.16945 364.48121 5.17 <.0001 VOLTAGE 1-53.95492 10.95264-4.93 <.0001 36 Proc plot; PLOT resid*voltage / vref=0; NOTE: There were 76 observations read from the data set WORK.NEXT. NOTE: The PROCEDURE PLOT printed page 4. NOTE: PROCEDURE PLOT used (Total process time): 37 Proc plot; PLOT resid*yhat / vref=0; 38 RUN; NOTE: There were 76 observations read from the data set WORK.NEXT. NOTE: The PROCEDURE PLOT printed page 5. NOTE: PROCEDURE PLOT used (Total process time): Plot of resid*voltage. Legend: A = 1 obs, B = 2 obs, etc. resid 2000 + A 1500 + A 1000 + A 500 + H A A O 0 +----------------------------------------------------------F------------------------------ C D M A J B G A -500 + A ---+-------------+-------------+-------------+-------------+-------------+-------------+-- 26 28 30 32 34 36 38 VOLTAGE

EXST3201 Chapter 8b Geaghan Fall 2005: Page 5 Initial fit of the raw data Plot of residuals Plot of resid*yhat. Legend: A = 1 obs, B = 2 obs, etc. resid 2000 + A 1500 + A 1000 + A 500 + H O A A 0 +------------------------------F---------------------------------------------------------- M D C J A G B A -500 + A ---+-------------+-------------+-------------+-------------+-------------+-------------+-- -164.12-56.21 51.70 159.61 267.52 375.43 483.34 YHat 39 PROC UNIVARIATE DATA=NEXT NORMAL PLOT; VAR resid; 40 RUN; NOTE: The PROCEDURE UNIVARIATE printed pages 6-8. NOTE: PROCEDURE UNIVARIATE used (Total process time): 0.01 seconds 0.01 seconds 41 Initial fit of the raw data Plot of residuals The UNIVARIATE Procedure Variable: resid Moments N 76 Sum Weights 76 Mean 0 Sum Observations 0 Std Deviation 295.687792 Variance 87431.2704 Skewness 4.02671557 Kurtosis 21.9169395 Uncorrected SS 6557345.28 Corrected SS 6557345.28 Coeff Variation. Std Error Mean 33.9177159

EXST3201 Chapter 8b Geaghan Fall 2005: Page 6 Basic Statistical Measures Location Variability Mean 0.0000 Std Deviation 295.68779 Median -46.0272 Variance 87431 Mode. Range 2318 Interquartile Range 203.20468 Tests for Location: Mu0=0 Test -Statistic- -----p Value------ Student's t t 0 Pr > t 1.0000 Sign M -9 Pr >= M 0.0505 Signed Rank S -283 Pr >= S 0.1440 Tests for Normality Test --Statistic--- -----p Value------ Shapiro-Wilk W 0.615009 Pr < W <0.0001 Kolmogorov-Smirnov D 0.248565 Pr > D <0.0100 Cramer-von Mises W-Sq 1.204042 Pr > W-Sq <0.0050 Anderson-Darling A-Sq 6.998223 Pr > A-Sq <0.0050 Quantiles (Definition 5) Quantile Estimate 100% Max 1840.3584 99% 1840.3584 95% 166.4975 90% 164.8475 75% Q3 58.5327 50% Median -46.0272 25% Q1-144.6720 10% -246.5019 5% -265.1417 1% -477.5515 0% Min -477.5515 Extreme Observations ------Lowest----- ------Highest----- Value Obs Value Obs -477.552 1 165.518 75-306.582 4 166.498 76-267.142 5 692.168 8-265.142 6 1096.178 2-259.782 9 1840.358 3 Stem Leaf Boxplot Normal Probability Plot 18 4 1 * 1850+ * 17 16 15 14 13 12 11 0 1 * 10 * 9 8 7 ++ 6 9 1 * * +++ 5 ++++ 4 +++ 3 +++ 2 ++++ 1 66666777 8 +++ ***** * 0 256666666666666678 18 +--+--+ +++******** -0 98776555555555544442221 23 *-----* ********* -1 6666665543321 13 +-----+ ******+ -2 776555422 9 ** *****++++ -3 1 1 * +++ -4 8 1 0-450+ * +++ ----+----+----+----+--- +----+----+----+----+----+----+----+----+----+----+ Multiply Stem.Leaf by 10**+2-2 -1 0 +1 +2

EXST3201 Chapter 8b Geaghan Fall 2005: Page 7 42 Title2 'Examination of the log transformed data'; 43 options ps=52 ls=111; 44 proc plot data=fluids; 45 plot LogTime * VOLTAGE; TITLE3 'Plot of the log transformed data'; 46 47 options ps=512 ls=111; NOTE: There were 76 observations read from the data set WORK.FLUIDS. NOTE: The PROCEDURE PLOT printed page 9. NOTE: PROCEDURE PLOT used (Total process time): Examination of the log transformed data Plot of the log transformed data Plot of LogTime*VOLTAGE. Legend: A = 1 obs, B = 2 obs, etc. LogTime 8 + A A A 6 + A B A B B A A B A 4 + A A A B A B A D B A A A 2 + A D A B A A A B A B C A C A A 0 + A B A B A B A A A A A A A -2 + A -4 + ---+-------------+-------------+-------------+-------------+-------------+-------------+-- 26 28 30 32 34 36 38 VOLTAGE 48 PROC REG DATA=Fluids lineprinter; ID group; 49 TITLE3 'Transformed regression with REG'; 50 MODEL LogTime = VOLTAGE; 51 output out=next r=resid p=yhat; 52 RUN;

EXST3201 Chapter 8b Geaghan Fall 2005: Page 8 Examination of the log transformed data Transformed regression with REG The REG Procedure Model: MODEL1 Dependent Variable: LogTime Number of Observations Read 76 Number of Observations Used 76 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 1 190.15149 190.15149 78.14 <.0001 Error 74 180.07484 2.43344 Corrected Total 75 370.22633 Root MSE 1.55995 R-Square 0.5136 Dependent Mean 2.14566 Adj R-Sq 0.5070 Coeff Var 72.70267 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 18.95546 1.91002 9.92 <.0001 VOLTAGE 1-0.50736 0.05740-8.84 <.0001 52! OPTIONS PS=45; 53 TITLE3 'Plot of residuals'; NOTE: The data set WORK.NEXT has 76 observations and 6 variables. NOTE: The PROCEDURE REG printed page 10. NOTE: PROCEDURE REG used (Total process time): 0.04 seconds 54 Proc plot; PLOT resid*voltage / vref=0; NOTE: There were 76 observations read from the data set WORK.NEXT. NOTE: The PROCEDURE PLOT printed page 11. NOTE: PROCEDURE PLOT used (Total process time): 0.01 seconds 0.01 seconds 55 Proc plot; PLOT resid*yhat / vref=0; 56 RUN; NOTE: There were 76 observations read from the data set WORK.NEXT. NOTE: The PROCEDURE PLOT printed page 12. NOTE: PROCEDURE PLOT used (Total process time): Examination of the log transformed data Plot of residuals

EXST3201 Chapter 8b Geaghan Fall 2005: Page 9 Plot of resid*voltage. Legend: A = 1 obs, B = 2 obs, etc. resid 4 + A A A A 2 + A A A A A A B C A C A A A A A B A D C A 0 +----------------B-------------B-------------B-------------B-------------C-------------B-- A A A A C B B A A A A A A A A A -2 + A A B A A -4 + A A ---+-------------+-------------+-------------+-------------+-------------+-------------+-- 26 28 30 32 34 36 38 VOLTAGE Chaper 8 : Time to breakdown of 76 samples of an insulating fluid Examination of the log transformed data Plot of residuals Plot of resid*yhat. Legend: A = 1 obs, B = 2 obs, etc. resid 4 + A A A A 2 + A A A A C B A A A A C A A A B A A A C D 0 +--B-------------C-------------B-------------B-------------B-------------B---------------- A A A A B B C A A A A A A A A A -2 + A A B A A -4 + A A ---+-------------+-------------+-------------+-------------+-------------+-------------+-- -0.324 0.690 1.705 2.720 3.735 4.749 5.764 YHat

EXST3201 Chapter 8b Geaghan Fall 2005: Page 10 57 PROC UNIVARIATE DATA=NEXT NORMAL PLOT; VAR resid; 58 RUN; NOTE: The PROCEDURE UNIVARIATE printed pages 13-15. NOTE: PROCEDURE UNIVARIATE used (Total process time): 0.01 seconds 0.01 seconds Examination of the log transformed data Plot of residuals The UNIVARIATE Procedure Variable: resid Moments N 76 Sum Weights 76 Mean 0 Sum Observations 0 Std Deviation 1.54951535 Variance 2.40099782 Skewness -0.6488654 Kurtosis 0.30321576 Uncorrected SS 180.074836 Corrected SS 180.074836 Coeff Variation. Std Error Mean 0.1777416 Basic Statistical Measures Location Variability Mean 0.000000 Std Deviation 1.54952 Median 0.036589 Variance 2.40100 Mode. Range 6.68044 Interquartile Range 1.91300 Tests for Location: Mu0=0 Test -Statistic- -----p Value------ Student's t t 0 Pr > t 1.0000 Sign M 3 Pr >= M 0.5666 Signed Rank S 93 Pr >= S 0.6333 Tests for Normality Test --Statistic--- -----p Value------ Shapiro-Wilk W 0.956759 Pr < W 0.0112 Kolmogorov-Smirnov D 0.10799 Pr > D 0.0267 Cramer-von Mises W-Sq 0.11647 Pr > W-Sq 0.0699 Anderson-Darling A-Sq 0.834933 Pr > A-Sq 0.0311 Quantiles (Definition 5) Quantile Estimate 100% Max 2.6513227 99% 2.6513227 95% 2.2239282 90% 1.8912724 75% Q3 1.2183016 50% Median 0.0365886 25% Q1-0.6947034 10% -1.9535119 5% -3.3657817 1% -4.0291137 0% Min -4.0291137 Extreme Observations ------Lowest----- -----Highest----- Value Obs Value Obs -4.02911 20 1.98695 3-4.00784 1 2.22393 8-3.63607 21 2.54836 68-3.36578 35 2.58390 53-3.09084 22 2.65132 34

EXST3201 Chapter 8b Geaghan Fall 2005: Page 11 Stem Leaf Boxplot Normal Probability Plot 2 567 3 2.75+ +*+* * 2 02 2 ++++* 1 5678888999 10 ******* 1 0222334 7 +-----+ ***+ 0 66778 5 *** 0 00000123334444 14 *--+--* ****** -0 4432211100 10 **** -0 9777776665 10 +-----+ -0.75+ ****+ -1 442 3 **++ -1 7777 4 **** -2 10 2 ++*+ -2 +++ * -3 410 3 +++ * * -3 6 1 0 +++ * -4 00 2 0-4.25+ * * ----+----+----+----+ +----+----+----+----+----+----+----+----+----+----+ -2-1 0 +1 +2 60 Title2 'Testing lack of fit'; 61 options ps=512 ls=111; 62 PROC GLM DATA=Fluids; class group; 63 TITLE3 'ANOVA of the Untransformed data with GLM'; 64 MODEL Time = group; 65 RUN; 67 options ps=512 ls=111; NOTE: The PROCEDURE GLM printed pages 16-17. NOTE: PROCEDURE GLM used (Total process time): Testing lack of fit ANOVA of the Untransformed data with GLM The GLM Procedure Class Level Information Class Levels Values GROUP 7 GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 GROUP 7 Number of Observations Read 76 Number of Observations Used 76 Dependent Variable: TIME Sum of Source DF Squares Mean Square F Value Pr > F Model 6 5082509.892 847084.982 16.12 <.0001 Error 69 3625243.641 52539.763 Corrected Total 75 8707753.533 R-Square Coeff Var Root MSE TIME Mean 0.583676 232.5697 229.2155 98.55776 Source DF Type I SS Mean Square F Value Pr > F GROUP 6 5082509.892 847084.982 16.12 <.0001 Source DF Type III SS Mean Square F Value Pr > F GROUP 6 5082509.892 847084.982 16.12 <.0001

EXST3201 Chapter 8b Geaghan Fall 2005: Page 12 Model d.f. Error SS Error MS F Pr>F Reduced 74 6557345.000 Full 69 3625243.641 Difference 5 2932101.359 586420.27180 11.161 0.000000066745 Full 69 3625243.641 52539.76291 68 PROC GLM DATA=Fluids; class group; 69 TITLE3 'Extra SS of fitting means after the slope'; 70 MODEL Time = voltage group; 71 RUN; NOTE: The PROCEDURE GLM printed pages 18-19. NOTE: PROCEDURE GLM used (Total process time): 0.04 seconds 0.04 seconds Testing lack of fit Extra SS of fitting means after the slope The GLM Procedure Class Level Information Class Levels Values GROUP 7 GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 GROUP 7 Number of Observations Read 76 Number of Observations Used 76 Dependent Variable: TIME Sum of Source DF Squares Mean Square F Value Pr > F Model 6 5082509.892 847084.982 16.12 <.0001 Error 69 3625243.641 52539.763 Corrected Total 75 8707753.533 R-Square Coeff Var Root MSE TIME Mean 0.583676 232.5697 229.2155 98.55776 Source DF Type I SS Mean Square F Value Pr > F VOLTAGE 1 2150408.256 2150408.256 40.93 <.0001 GROUP 5 2932101.636 586420.327 11.16 <.0001 Source DF Type III SS Mean Square F Value Pr > F VOLTAGE 0 0.000... GROUP 5 2932101.636 586420.327 11.16 <.0001