Toward the understanding of QCD phase structure at finite temperature and density

Similar documents
Study of QCD critical point at high temperature and density by lattice simulations

Eigenvalue Distributions of Quark Matrix at Finite Isospin Chemical Potential

Pipe flow friction, small vs. big pipes

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

A Propagating Wave Packet Group Velocity Dispersion

Section 11.6: Directional Derivatives and the Gradient Vector

CE 530 Molecular Simulation

Math 34A. Final Review

First derivative analysis

2008 AP Calculus BC Multiple Choice Exam

Pion condensation with neutrinos

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

First order transitions in finite temperature and density QCD with two and many flavors

Finite element discretization of Laplace and Poisson equations

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Coupled Pendulums. Two normal modes.

Image Filtering: Noise Removal, Sharpening, Deblurring. Yao Wang Polytechnic University, Brooklyn, NY11201

Molecular Orbitals in Inorganic Chemistry

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Higher-Order Discrete Calculus Methods

5.80 Small-Molecule Spectroscopy and Dynamics

Title: Vibrational structure of electronic transition

Elements of Statistical Thermodynamics

High Energy Physics. Lecture 5 The Passage of Particles through Matter

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: WHAM and Related Methods

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Statistical Thermodynamics: Sublimation of Solid Iodine

AS 5850 Finite Element Analysis

3) Use the average steady-state equation to determine the dose. Note that only 100 mg tablets of aminophylline are available here.

Things I Should Know Before I Get to Calculus Class

EXST Regression Techniques Page 1

5. Equation of state for high densities

Chapter 8: Electron Configurations and Periodicity

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

IYPT 2000 Problem No. 3 PLASMA

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Lenses & Prism Consider light entering a prism At the plane surface perpendicular light is unrefracted Moving from the glass to the slope side light

Determination of Vibrational and Electronic Parameters From an Electronic Spectrum of I 2 and a Birge-Sponer Plot

Extraction of Doping Density Distributions from C-V Curves

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

Need to understand interaction of macroscopic measures

hep-lat/ Dec 93

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

Quasi-Classical States of the Simple Harmonic Oscillator

1973 AP Calculus AB: Section I

Collisions between electrons and ions

The pn junction: 2 Current vs Voltage (IV) characteristics

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Principles of Humidity Dalton s law

Hydrogen Atom and One Electron Ions

Multipole effects to the opacity of hot dense gold plasma

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Differentiation of Exponential Functions

Synchronous machines

1 General boundary conditions in diffusion

EEO 401 Digital Signal Processing Prof. Mark Fowler

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

The influence of electron trap on photoelectron decay behavior in silver halide

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

General Notes About 2007 AP Physics Scoring Guidelines


AerE 344: Undergraduate Aerodynamics and Propulsion Laboratory. Lab Instructions

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

as a derivative. 7. [3.3] On Earth, you can easily shoot a paper clip straight up into the air with a rubber band. In t sec

The mechanisms of antihydrogen formation

The failure of the classical mechanics

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

On the Hamiltonian of a Multi-Electron Atom

Search sequence databases 3 10/25/2016

Standard Model - Electroweak Interactions. Standard Model. Outline. Weak Neutral Interactions. Electroweak Theory. Experimental Tests.

Text: WMM, Chapter 5. Sections , ,

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

Einstein Equations for Tetrad Fields

Neutrino Mass and Forbidden Beta Decays

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

A nonequilibrium molecular dynamics simulation of evaporation

Pair (and Triplet) Production Effect:

LEP Higgs Search Results. Chris Tully Weak Interactions and Neutrinos Workshop January 21-26, 2002

Optics and Non-Linear Optics I Non-linear Optics Tutorial Sheet November 2007

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Solution of Assignment #2

Deift/Zhou Steepest descent, Part I

The Generalized PV θ View and their applications in the Severe Weather Events

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real.

CHAPTER 10. Consider the transmission lines for voltage and current as developed in Chapter 9 from the distributed equivalent circuit shown below.

SUMMER 17 EXAMINATION

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

Transcription:

Toward th undrstanding o QCD phas structur at init tmpratur and dnsity Shinji Ejiri iigata Univrsity HOT-QCD collaboration S. Ejiri1 S. Aoki T. Hatsuda3 K. Kanaya Y. akagawa1 H. Ohno H. Saito and T. Umda5 1 iigata Univ. Univ. o Tsukuba 3 IKE Billd Univ. 5 Hiroshima Univ. Osaka Univ. 1/1/

QCD phas structur at high tmpratur and dnsity Lattic QCD Simulations has transition lins T quark-gluon plasma phas Equation o stat Dirct simulation: Impossibl at. HIC LHC SS HIC E-scan J-AC AGS dconinmnt? hadron phas chiral SB? nuclar mattr quarkyonic? color supr conductor? q

Histogram mthod roblm o Complx Dtrminant at Boltzmann wight: complx at Mont-Carlo mthod is not applicabl. Distribution unction in Dnsity o stat mthod (Histogram mthod) X: ordr paramtrs total quark numbr avrag plaqutt tc. ( X m T ) DU δ( X-Xˆ ) dtm ( m ) Expctation valus O O 1 DU O dt M ( m ) Z g ( ) ( m T ) Sg ( ) ; 1 Z [ X ] ( ) dx O[ X ] ( X m ) T m T Z complx S ( m T ) dx ( X m T )

(β m )-dpndnc o th Distribution unction Distributions o plaqutt (1x1 ilson loop or th standard action) ˆ ( ) 6 sit β ( β m ) DUδ( - ˆ ) dtm ( m ) ( β β m m ) ( β m ) ( β ) m S g (wight actor) 6 ˆ sit β 6sit ( β β ) ( ) ' δ ( ˆ dtm ) ( m ) - dtm δ ( - ˆ ) ( m ) ( β ) ( β ) 6 sit ( β β ) ( ) ' dtm m dtm ( m ) ' Ectiv potntial: V indpndnt o β ( β m ) [ ( βm )] V ( β m ) ( β β m m ) ( ) 6 ( β β ) sit + ( m ) ( m ) dtm dtm

Sign problm ( m ) ( m ) dt i dtm X ixd dt dtm ( m ) ( m ) M M X ixd : complx phas o (dtm) Sign problm: I i changs its sign rquntly ( X ) ~ i dtm dtm ( m ) ( m ) X ixd << (statistical rror)

Ovrlap problm O 1 1 O ( X ) dx xp( V ( ) ( )) X + O dx Z Z V ( X ) ( X ) is computd rom th histogram. Distribution unction around X whr V ( X ) ( O) is minimizd: important. V must b computd in a wid rang. V ( X ) ( O) V ( X ) ( O) + Out o th rliabl rang rliabl rang I X-dpndnc is larg. rliabl rang

Distribution unction in qunchd simulations Ectiv potntial in a wid rang o : rquird. laqutt histogram at K1/mq. Drivativ o V at β5.69 3 sit 5 β points qunchd. dv dv dv/d is adjustd to β5.69 using β β1 6 β sit β d d Ths data ar combind by taking th avrag. ( ) ( ) ( ) 1

Distribution unctions or and Expctation valu o olyakov loop and its suscptibility by th rwightuing mthod at. 3 lattic χ κ β * β + 8 K κ β * β + 8 K I () is a Gaussian distribution Th pak position o () (<><>) Th width o () suscptibilitis χ χ I () hav two paks irst ordr transition ~ χ

V Z -dpndnc o th ctiv potntial Crossovr ( X T ) ( T ) dx ( X T ) Corrlation gth: short V(X): Quadratic unction V ( X ) Critical point X: ordr paramtrs total quark numbr avrag plaqutt quark dtrminant tc. ( X ) Corrlation gth: long Curvatur: Zro T QG 1 st ordr phas transition hadron CSC? Two phass coxist Doubl wll potntial

Quark mass dpndnc o th critical point nd ordr Qunchd 1 st ordr hysical point ms 1 st ordr Crossovr mud hr is th physical point? Extrapolation to init dnsity invstigating th quark mass dpndnc nar Critical point at init dnsity?

Distribution unction in th havy quark rgion Hopping paramtr xpansion ( K ) ( ) dt M dt M (HOT-QCD hys.v.d8 55(11)) t 3 t ( 88 K + 1 K ( cosh( T ) + i sinh( T ) ) + ) sit study th proprtis o (X) in th havy quark rgion. rorming qunchd simulations + wighting. ind th critical surac. Standard ilson quark action + plaqutt gaug action S g 6sitβ lattic siz: 3 5 simulation points; β5.68-5.7. : plaqutt +ii : olyakov loop dt M ( ) 1 s I phas

Ectiv potntial nar th qunchd limit() HOT-QCD hys.v.d8 55(11) at phas transition point Qunchd Simulation (mq K) K~1/mq or larg mq Critical point or : Kcp.658(3)(8) T c m π. V ( β m ) [ ( βm )] V ( β m ) ( β β m m ) dtm: Hopping paramtr xpansion ( ) 6 ( β β ) + irst ordr transition at K changs to crossovr at K >. sit ( m ) ( m ) dtm dtm

Ordr o th phas transition olyakov loop distribution Ectiv potntial o on th psudo-critical lin at Th psudo-critical lin is dtrmind by χ pak. χ Doubl-wll at small K irst ordr transition Singl-wll at larg K Crossovr Critical point : κ. 1 5

olyakov loop distribution in th complx plan 6 κ. 5. 1 () 5 κ κ 1. 1 I I I κ 1.5 1 5 κ. 1 5 κ.5 1 5 I I critical point I on βpc masurd by th olyakov loop suscptibility.

Distribution unction o at init dnsity Hopping paramtr xpansion ( β K ) ( β ) Adopting ( β K ) DU δ( ˆ ) dtm ( κ) xp Ectiv potntial: β β + 8 K V ˆ 6 ( ) sit ( ( ) ) ˆ t 3 t 6 β β + 88 K 1 K cosh( T ) [ ˆ ] sit s + i ; β K ( ( ) ) t 3 t K sinh T ˆ 1 s ( ; β K ) ( ; β K ) I V t 3 t ( β K ) V ( β ) 1 K cosh( T ) V ( β K ) has-qunchd part i ; β s K has avrag i ; β K V is V () whn w rplac t 3 t (at V ( ) ( ) ) β K V β 1 s K K K t t cosh ( T )

Sign problm: I changs its sign Cumulant xpansion Odd trms vanish rom a symmtry undr ( ) Sourc o th complx phas I th cumulant xpansion convrgs o sign problm. + + C C C C i i i 3! 1 3! 1 xp Avoiding th sign problm (SE hys.v.d77158(8) HOT-QCD hys.v.d8 158(1)) rror) (statistical ixd << i + C C C C 3 3 3 3 cumulants <..>: xpctation valus ixd and. i : complx phas M Im dt ( ) I s T K t t sinh 1 3

Convrgnc in th larg volum (V) limit Th cumulant xpansion is good in th ollowing situations. I th phas is givn by o corrlation btwn x. atios o cumulants do not chang in th larg V limit. Convrgnc proprty is indpndnt o V although th phas luctuation bcoms largr as V incrass. Th application rang o can b masurd on a small lattic. hn th distribution unction o is prctly Gaussian th avrag o th phas is giv by th scond ordr x x n C n n i n i! xp x n C n x n x i i i n i x x x! xp ) ( ~ V O x C n x C n C i 1 xp

β * 5.69 K ( μ) sinh( μ T ). Cumulant xpansion i 1 C K + 1! C 1 6! ( μ) sinh( μ T ). 5 6 C + K ( μ) sinh( μ T ). 1 Th ct rom highr ordr trms is small nar th critical point o phas-qunchd part. K t t ( ) K ( μ) cosh( μ T ) K ( μ) sinh( μ T ) cp t cp cp > ~.

Ect rom th complx phas actor olyakov loop ctiv potntial or ach at th psudo-critical (β K). Solid lins: complx phas omittd i.. Dashd lins: complx phas is stimatd with ( μ T ) sinh sinh K t cosh ( T ) ( T ) cosh( T ) t 3 ( 1 s K t sinh( T ) ) I V ( ) V ( ) V ( ) + 1 i :ixd :ixd Th ct rom th complx phas actor is vry small xcpt nar.

Critical lin in +1-lavor init dnsity QCD Th ct rom th complx phas is vry small or th dtrmination o Kcp. +1 ( dt M ( Kud )) dt M ( K s ) 3 ( dt M ( ) ) at : Kcp.658(3)(8) (HOT-QCD hys.v.d8 55(11)) 88 sit dt dt M ( K ) ( ) t t ( 88 K + 1 K + ) M 3 sit s K t ( ) K ( ) cosh( T ) t cp cp t 3 μud μ t t s ( K + K ) + 1 K cosh + K cosh + ud s s ud T s T Th critical lin is dscribd by K t ud Critical lin or uds μ cosh T ud + K s t μ cosh T s K t cp( ) Critical lin or ud s

Distribution unction in th light quark rgion HOT-QCD Collaboration in prparation (akagawa t al. arxiv:1111.116) rorm phas qunchd simulations Add th ct o th complx phas by th rwighting. Calculat th probability distribution unction. Goal Th critical point Th quation o stat rssur Enrgy dnsity Quark numbr dnsity Quark numbr suscptibility Spd o sound tc.

robability distribution unction by phas qunchd simulation prorm phas qunchd simulations with th wight: ( ' ' β m ) DU δ( ' ) δ( ' ) dtm ( m ) dtm DU δ S g ( m ) ˆ ˆ ( ) ( ˆ ) δ( ˆ ) i ' ' dtm ( m ) S g S g i ' ' ( ) xpctation valu with ixd : plaqutt sit ( ' ' β m ) dt dt M M histogram ( ) ( ) Im dt M Distribution unction o th phas qunchd. ( ) ( ) ( ) ˆ DU ˆ ˆ 6 β ' ' δ ' δ ' dtm sit

-dpndnc o th ctiv potntial Curvatur o th ctiv potntial Crossovr [ ( β) ] Critical point [ ( ) ] β [ ] i + T QG 1 st ordr phas transition [ ( ) ] β phas ct Curvatur: Zro [ ] i hadron CSC + phas ct Curvatur: gativ

Curvatur o th ctiv potntial I th distribution is Gaussian sit sit ( ) xp ( ) 6 sit 6sit ( ) xp πχ χ πχ χ χ sit ( ) 6 χ sit ( ) ( ) ( ) 6sit ( ) ( ) χ χ sit at th pak o th distribution

Complx phas distribution should not din th complx phas in th rang rom -π to π. hn th distribution o q is prctly Gaussian th avrag o th complx phas is giv by th scond ordr (varianc) i 1 xp C () () o inormation C π Gaussian distribution Th cumulant xpansion is good. din th phas ( ) Th rang o is rom - to. π dt M Im dt M ( ) T dt ( ) Im ( T ) π π M d T

Distribution o th complx phas ll approximatd by a Gaussian unction. Convrgnc o th cumulant xpansion: good. 1 xp i 1 1 at th pak o in ach simulation β

Simulations 8 3 lattic. 8 m π m ρ Simulation point in th (β /T) -lavor QCD Iwasaki gaug + clovr ilson quark action andom nois mthod is usd. ak o () or ach

Curvatur o th ctiv potntial - Th curvatur or dcrass as incrass.

Ect rom th complx phas apidly changs around th psudo-critical point.

Critical point at init zro curvatur: xpctd at a larg.

Curvatur o th ctiv potntial ithout th complx phas ct ( ) ( ) χ ( ) sit χ sit

has avrag nd ordr cumulant i 1 1 1 β

Curvatur o th ctiv potntial Th ct o th phas incrudd. zro curvatur Critical point

ak position o () Th slops ar zro at th pak o (). ( ) ( ) ( ) ( ) ( ) i sit i + + β β + β + β β 6 ( ) ( ) ( ) β β ( ) ( ) ( ) ( ) i i + + β + β β I ths trms ar cancld ( ) ( ) ) (const. β β (β ) can b computd by simulations around (β). ) (

QCD phas diagram ( ) i β m ( β ) m phas-qunchd QCD Τ Τ init-dnsity QCD i pion condnsd phas mπ/ color suprconductor phas?

Summary studid th quark mass and chmical potntial dpndnc o th natur o QCD phas transition. Th shap o th probability distribution unction changs as a unction o th quark mass and chmical potntial. To avoid th sign problm th mthod basd on th cumulant xpansion o is usul. Our rsults by phas qunchd simulations suggst th xistnc o th critical point at high dnsity. To ind th critical point at init dnsity urthr studis in light quark rgion ar important applying this mthod.

Backup

Complx phas Gaussian distribution Th cumulant xpansion is good. din th phas Th rang o is rom - to. At th sam tim w calculat as a unction o ( ) ( ) Im dt dt dt dt M M M M ( ) T dt ( ) Im ( T ) ( ) T dt ( ) ( T ) Th rwighting actor is also computd M M d T d T C ( ) dt dt M M ( ) T dt ( ) T ( T ) M d T

Distribution unction or and ˆ 6 ( ) sit ( β κ) DU δ( ˆ ) δ( ˆ ) dtm ( κ) ( β K ) ( β ) δ ( ) M ( ) ( ) ( K ) -ˆ β β δ -ˆ 6 dt sit δ ( -ˆ ) δ( -ˆ ) dtm ( ) ( β K ) ( β K ) 6 sit ( β β ) ˆ dtm ( K ) dtm ( ) V Ectiv potntial Hopping paramtr xpansion ( β κ) V ( β ) 6( β β ) paramtrs in V: V is th sam as V () whn 1 paramtr in : t 3 t ( + 88 K ) 1 K cosh( T ) ( β κ) V V has-qunchd part K t ( ; β κ) ( ; β κ) i sit s ( ( ) ) t 3 t K sinh T ˆ 1 s * β + 8 K β K ( T ) t cosh sinh K K t t cosh ( T ) t t ( T ) K cosh( T ) tanh( T ) < K cosh( T ) i I

Ordr o phas transitions and Distribution unction ( β κ) DU δ( ) δ( ) dtm ( κ) V ( ; β κ) ( ; β κ) dv d dv d ak position o : ˆ ˆ ( ) 6sit Lins o zro drivativs or irst ordr crossovr 1 intrsction irst ordr transition 3 intrsctions

V dv Drivativs o V in trms o and has-qunchd part: whn ( β κ) V ( β ) 6( β β ) ( β K ) dv ( β) dv 6( β β ) ( β K ) dv ( β) + K ( ) sit 88 d d masurd at κ dv d constant shit i is nglctd ( ) t 3 t + 88 K sit 1 s K cosh( T ) dv d d 3 d 1 t t s K cosh T constant shit dv Contour lins o and at (βκ) (β) corrspond to d dv d th lins o th zro drivativs at (βκ).

dv dv d dv d lins o and in th () plan ( β) * 6 ( β β + 8 K ) ( β β ) 6 sit d sit dv d ( β ) t 3 1 s K t cosh T dv dv d d K3.E-5 K.E-5 K1.E-5 K. b* 5.68 5.69 5.7 dv d Small K: lins o : S-shap irst ordr Larg K: lins o dv : straight lin crossovr d