Expected precision on planet radii with

Similar documents
Kepler photometric accuracy with degraded attitude control

The CHEOPS Mission Consortium David Ehrenreich

Lab 4: Differential Photometry of an Extrasolar Planetary Transit

Lecture 9. November 1, 2018 Lab 5 Analysis

arxiv: v1 [astro-ph.sr] 22 Aug 2014

Detection of Exoplanets Using the Transit Method

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

arxiv:astro-ph/ v1 14 Sep 2005

Lecture 8. October 25, 2017 Lab 5

The MOST data pipeline: Lessons for Kepler? Jaymie M. Matthews University of British Columbia Vancouver, Canada

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

CHARACTERIZING EXOPLANETS SATELLITE

NICMOS Status and Plans

Photometric Techniques II Data analysis, errors, completeness

Hierarchical Bayesian Modeling

Large Scale Bayesian Inference

Statistical validation of PLATO 2.0 planet candidates

Uniform Modeling of KOIs:

Measuring Radial Velocities of Low Mass Eclipsing Binaries

arxiv: v1 [astro-ph.ep] 25 May 2009

IRF applied to the transit of CoRoT planets

Monitoring the Behavior of Star Spots Using Photometric Data

Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

First Results from BOKS: Searching for extra-solar planets in the Kepler Field

Planet Detection Metrics:

Supplementary Materials for

Basics of Photometry

Dark Matter Halos of M31. Joe Wolf

Observer Anomaly(?): Recent Jitter and PSF Variations

Photometry and Transit-Timing Analysis for Eleven Transiting Exoplanets. Katherine Rebecca de Kleer

Probabilistic modeling and Inference in Astronomy

arxiv: v2 [astro-ph.ep] 3 Sep 2014

Realistic limitations of detecting planets around young active stars

WHAT PHOTOMETRIC PRECISION CAN I ACHIEVE? DAVID BOYD

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team

The shapes of faint galaxies: A window unto mass in the universe

Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians

Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope

Planet Detection Metrics:

Detection and characterization of exoplanets from space

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5

Kepler Q1 Q12 TCE Release Notes. KSCI Data Analysis Working Group (DAWG) Jessie L. Christiansen (Editor)

Probing the Dynamical History of Exoplanets: Spectroscopic Observa<ons of Transi<ng Systems

FLAT FIELDS FROM THE MOONLIT EARTH

arxiv: v1 [astro-ph.ep] 18 Feb 2009

Searching for transiting giant extrasolar planets. Department of Physics University of Tokyo Yasushi Suto

Transiting Exoplanet in the Near Infra-red for the XO-3 System

Astronomy. Astrophysics. Deriving structural parameters of semi-resolved star clusters. FitClust: a program for crowded fields

HARPS-N Contributions to the Mass-Radius

Hierarchical Bayesian Modeling of Planet Populations

3.3 ANALYSIS. H2RG CHARACTERISATION METHODS Bogna Kubik, analyst. NISP, NI-SCS Test Readiness Review IPNL, October 2016

Cosmic shear analysis of archival HST/ACS data

PROJECT GLOBULAR CLUSTERS

Detrend survey transiting light curves algorithm (DSTL)

Secondary Eclipse of Exoplanet TrES-1

Photometric Products. Robert Lupton, Princeton University LSST Pipeline/Calibration Scientist PST/SAC PST/SAC,

Additional Keplerian Signals in the HARPS data for Gliese 667C from a Bayesian re-analysis

Convergence Diagnostics For Markov chain Monte Carlo. Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 9, 2017

Concepción, Chile ABSTRACT

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing

Cross-Talk in the ACS WFC Detectors. I: Description of the Effect

Exponential Profile Formation in Simple Models of Scattering Processes

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

Exoplanet Pursuit. PLANet B. Kalpaxis Georgios Vasilainas Athanasios Vatistas Andreas

Shallow. Deep. Transits Learning

The Rossiter- McLaughlin Effect

Professional / Amateur collaborations in exoplanetary science

Bayesian search for other Earths

Validation of Transiting Planet Candidates with BLENDER

Michaël Gillon (Université de Liège, Belgium)

Asteroseismology with WFIRST

WFC3 TV2 Testing: UVIS-2 Dark Frames and Rates

arxiv: v1 [astro-ph.sr] 8 Aug 2017

Transit signal reconstruction

arxiv: v2 [astro-ph.ep] 13 Sep 2017

Point Spread Functions. Aperture Photometry. Obs Tech Obs Tech 26 Sep 2017

arxiv: v1 [astro-ph.im] 19 Dec 2014

Search for Extra-Solar Planets using the Transit Method. Kyle Bernier. Advisor Dr. Yelena Prok. PCSE Cap Stone Project

Data Reduction - Optical / NIR Imaging. Chian-Chou Chen Ph319

PAN-PLANETS. Searching for Hot Jupiters around Cool Stars. Christian Obermeier Johannes Koppenhöfer, Thomas Henning, Roberto Saglia

Selection of stars to calibrate Gaia

arxiv: v2 [astro-ph.ep] 26 Jun 2018

How to calibrate interferometric data

A tool to test galaxy formation theories. Joe Wolf (UC Irvine)

Calibration Goals and Plans

3.4 Transiting planets

arxiv: v1 [astro-ph.ep] 11 May 2015

Updated Measurements of ACS/SBC Dark Rates

Requirements for the Star Tracker Parallel Science Programme

WFPC2 Cycle 7 Calibration Plan

GJ 436. Michaël Gillon (Geneva)

Data Processing in DES

GENERIC DATA REDUCTION FRAMEWORK FOR SPACE SURVEILLANCE

Detection of Exoplanets by Amateur Astronomers

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

PoS(ICRC2017)765. Towards a 3D analysis in Cherenkov γ-ray astronomy

EXONEST The Exoplanetary Explorer. Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY

Transcription:

Expected precision on planet radii with Adrien Deline 1, Didier Queloz 1,2 1 University of Geneva 2 University of Cambridge 24 th 26 th July 2017 CHEOPS Science Workshop 5 Schloss Seggau, Austria

Field of View 200 x200 (1 = 1 pixel) defocused PSF (Ø PSF 20 ) specific shape 200 20 2

Field of View 200 x200 (1 = 1 pixel) defocused PSF (Ø PSF 20 ) specific shape (extended halo) 3

Field of View 200 x200 (1 = 1 pixel) defocused PSF (Ø PSF 20 ) specific shape (extended halo) background stars field of view rotation (PSF not rotating!) jitter (about 1.32 rms) 4

CHEOPSim https://cheops.unige.ch/cheopsim Developed by the Science Operations Center (SOC) main developer : David Futyan (david.futyan@unige.ch) 5

Photometric extraction tool Developed independently from the Data Reduction Pipeline (DRP) Purposes : Testing output data from CHEOPSim feedback during development Processing data from calibration campaign DRP not delivered specific field of view (on-ground calibration tracking system) Cross-checking with the Data Reduction Pipeline 6

Photometric extraction tool Raw data Corrected images Light curve Bias & RON estimation Background subtraction Detrending + fitting ADU to e conversion Dark current estimation PSF center estimation Aperture photometry Transit parameters Flat field correction 7

Photometric extraction tool σ 6h = 9.43 ppm Raw data Corrected images Light curve Bias & RON estimation ± 0.5 ADU Background subtraction ± 3 e Detrending + fitting 0.439 ADU/e ADU to e conversion Dark current estimation ± 0.022 e /s PSF center estimation Aperture photometry ± 0.005 pixel Transit parameters Flat field correction Typical precision for - G5 star, m V = 9-6x 10s-exposures - nominal jitter - medium background 8

Main effects of new PSF PSF center estimation new method necessary : IWCOG (iterative weighted center of gravity) high CPU usage (not on-board -compatible) precision better than 0.012 pixel rms (measured on datasets varying background and jitter) Background noise extended halo (more energy in the background) Original simulated PSF 9

Photometric precision (case 1) Target star G5, m V =9 K5, m V =12 Exposure time 6x 10s 1x 60s Jitter 2x nominal 2x nominal Thermal variations no no Background none none Flicker no no σ 6h = 8.95 ppm σ 6h = 34.98 ppm 10

Photometric precision (case 2) Target star G5, m V =9 K5, m V =12 Exposure time 6x 10s 1x 60s Jitter nominal nominal Thermal variations yes yes Background medium medium Flicker no no σ 6h = 9.43 ppm σ 6h = 28.09 ppm 11

Photometric precision (case 3) Target star G5, m V =9 K5, m V =12 Exposure time 6x 10s 1x 60s Jitter nominal nominal Thermal variations yes yes Background none none Flicker yes yes σ 6h = 13.30 ppm σ 6h = 30.25 ppm 12

Light curve fitting Example of a super-earth (2R earth ) transiting a G5 star (m V =9) Transit model batman (Kreidberg 2015b) used by CHEOPSim Gaussian processes george (Ambikasaran 2014a) to simultaneously fit correlated noise and transit Markov Chain Monte Carlo (MCMC) emcee (Foreman-Mackey 2013) to explore the parameter space 13

Details on Gaussian processes Kernels Two kernels considered for now (radial and periodic) Results presented for periodic kernel! x #, x % = ' ( exp 1 2. ( sin( 2 3 x # x % ' : amplitude scale. : roughness parameter T : oscillation period Transit fit Parameter Prior Orbital period Gaussian Eccentricity Fixed to 0 Limb-darkening coefficients Uniform (Kipping 2013) Semi-major axis Uniform (tight) Others Uniform 14

Precision on planet radii Target G5, mv=9 Duration 64 hours Exposures per image 6x 10 seconds Jitter none Background none Flicker no Planet radius 2 R Orbital period 10 days (1 transit) Impact parameter 0.2 (i = 89.4 ) RP truth ε ε = 2.6 % 3σ = 5.8 % 3σ Time [min] 15

Precision on planet radii Target K5, mv=12 Duration 48 hours Exposures per image 1x 60 seconds Jitter none Background none Flicker no Planet radius 1R Orbital period 14 hours (3 transits) Impact parameter 0.2 (i = 86.9 ) RP truth ε ε = -1.1 % 3σ = 4.0 % 3σ Time [min] 16

Precision on planet radii Cases - G5, m V =9, R P =2R - K5, m V =12, R P =R 7 scenarios increasing jitter intensity, background level or stellar noise Overall results - ε max = 2.6 % - 3σ max = 6.2 % Target G5, m V =9 K5, m V =12 Duration 64 hours 48 hours Exposures per image 6x 10 seconds 1x 60 seconds Jitter none none Background none none Flicker no no Planet radius 2 R 1 R Orbital period 10 days (1 transit) 14 hours (3 transits) Impact parameter 0.2 (i = 89.4 ) 0.2 (i = 86.9 ) Scenarios ε 3σ ε 3σ default 2.6 % 5.8 % -1.1 % 4.0 % Precision not affected significantly Variations of less than 1% Error varies randomly but always below 1.5 σ jitter x1 1.9 % 6.0 % 0.2 % 3.9 % jitter x2-0.6 % 5.6 % -1.7 % 4.2 % jitter x3 0.2 % 5.2 % -2.3 % 4.6 % bkg low -1.2 % 5.4 % 2.0 % 3.9 % bkg medium -1.0 % 5.3 % -1.2 % 4.6 % flicker 1.2 % 6.2 % 1.9 % 4.2 % 17

Precision on planet radii Number of data points in the light curve Single-transit case (G5 scenario) Reduce the number of out-of-transit points No significant effect Multiple-transit case (K5 scenario) Reduce the number of transits Significant effect on the precision South Atlantic Anomaly interruptions The SAA causes scattered interruptions that represent about 9% of the time. Significant effect, especially in the single-transit case Overall results : 3σ max = 8.3 % Duration ε Δt G5 = 3.9 h Δt K5 = 74 min G5, m V =9 3σ 64 hours (default) 1.9 % 6.0 % 42.7 hours (x2/3) 0.6 % 5.2 % 15.5 hours (4 Δt G5 ) 0.4 % 6.3 % SAA interruptions 0.5 % 8.3 % Duration ε K5, m V =12 3σ 48 hours (default) 0.2 % 3.9 % 32 hours (x2/3) * 1.0 % 4.8 % 5 hours (4 Δt K5 ) ** -0.1 % 7.0 % SAA interruptions 1.2 % 4.7 % * 2 transits ** 1 transit 18

Summary Precision on planet radii : - better than 10 % - error lower than 1.5 σ Jitter, background and stellar flicker seems to have limited effect on the radii precision Duration of the time series affects the precision mainly if the number of transits is reduced The SAA interruptions lower the precision, in particular in the single-transit case 19

Thank you! Questions?