Chapter 1 Recollections from Elementary Quantum Physics

Similar documents
Graduate Texts in Physics

Quantum mechanics in one hour

The Schrödinger Equation

1 Mathematical preliminaries

Basic Quantum Mechanics

Chapter 38 Quantum Mechanics

Angular momentum and spin

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

Statistical Interpretation

Applied Nuclear Physics (Fall 2006) Lecture 2 (9/11/06) Schrödinger Wave Equation

CHM 532 Notes on Wavefunctions and the Schrödinger Equation

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

The quantum state as a vector

1 The postulates of quantum mechanics

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

E = φ 1 A The dynamics of a particle with mass m and charge q is determined by the Hamiltonian

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

Lecture 2: simple QM problems

16.1. PROBLEM SET I 197

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3

Neutron interferometry. Hofer Joachim

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

CHAPTER 8 The Quantum Theory of Motion

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

3. Quantum Mechanics in 3D

Massachusetts Institute of Technology Physics Department

Physics 486 Discussion 5 Piecewise Potentials

Semiconductor Physics and Devices

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

Continuous quantum states, Particle on a line and Uncertainty relations

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Introduction to Electronic Structure Theory

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes

Physics-I. Dr. Anurag Srivastava. Web address: Visit me: Room-110, Block-E, IIITM Campus

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

Quantum Mechanics of Atoms

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

David J. Starling Penn State Hazleton PHYS 214

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12

Quantum Mechanics. L. Del Debbio, University of Edinburgh Version 0.9

The Photoelectric Effect

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

Chapter 38. Photons and Matter Waves

Wave Mechanics in One Dimension

Chapter 4 Section 2 Notes

Problem 1: Spin 1 2. particles (10 points)

PHY 571: Quantum Physics

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

CHE3935. Lecture 2. Introduction to Quantum Mechanics

Repeated Eigenvalues and Symmetric Matrices

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer.

Lecture 01. Introduction to Elementary Particle Physics

The Birth of Quantum Mechanics. New Wave Rock Stars

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Complementi di Fisica Lectures 5, 6

Complementi di Fisica Lectures 10-11

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

PY 351 Modern Physics - Lecture notes, 3

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty.

Identical Particles in Quantum Mechanics

Chemistry 3502/4502. Exam I. September 19, ) This is a multiple choice exam. Circle the correct answer.

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

The Quantum Theory of Atoms and Molecules

CHEM-UA 127: Advanced General Chemistry I

MP463 QUANTUM MECHANICS

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PY 351 Modern Physics - Lecture notes, 1

4 Quantum Mechanical Description of NMR

Wave properties of matter & Quantum mechanics I. Chapter 5

PHYS-454 The position and momentum representations

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics.

Wave Phenomena Physics 15c

SECOND QUANTIZATION PART I

G : Quantum Mechanics II

Introduction to Quantum Physics and Models of Hydrogen Atom

chmy361 Lec42 Tue 29nov16

Quantum Physics in the Nanoworld

The Wave Function. Chapter The Harmonic Wave Function

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall.

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

Notes on wavefunctions IV: the Schrödinger equation in a potential and energy eigenstates.

Problem 1: A 3-D Spherical Well(10 Points)

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Two and Three-Dimensional Systems

The Wave Function. Chapter The Harmonic Wave Function

Quantum Physics II (8.05) Fall 2002 Assignment 11

Angular momentum. Quantum mechanics. Orbital angular momentum

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving:

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Quantum Mechanics Basics II

Quantum Mechanics for Scientists and Engineers

Physics 1C Lecture 29B

Ch. 1: Atoms: The Quantum World

Transcription:

Chapter 1 Recollections from Elementary Quantum Physics Abstract We recall the prerequisites that we assume the reader to be familiar with, namely the Schrödinger equation in its time dependent and time independent form, the uncertainty relations, and the basic properties of angular momentum. Introductory courses on quantum physics discuss the one-dimensional Schrödinger equation for the wave function Ψ(x,t)of a particle of mass M moving in a potential V i Ψ t = M Ψ + VΨ. (1.1) x Therein = h/π is the reduced Planck constant. The function Ψ is understood as a probability amplitude whose absolute square Ψ(x,t) = Ψ (x, t)ψ (x, t) gives the probability density for finding the particle at time t at position x. This probability density is insensitive to a phase factor e iϕ. With the Hamilton operator H = + V, (1.) M x the Schrödinger equation reads Ψ = i HΨ. (1.3) The dot denotes the time derivative. In this text, we print operators and matrices in nonitalic type, like H, p,orσ,just to remind the reader that a simple letter may represent a mathematical object more complicated than a number or a function. Ordinary vectors in three-dimensional space are written in bold italic type, like x or B. The time dependent Schrödinger equation reminds us of the law of energy conservation E = p /M + V if we associate the operator i / t with energy E and the operator ( /i) / x with momentum p. Take as an example the plane wave Ψ(x,t)= Ψ 0 e i(kx ωt) of a photon propagating in the x-direction. The energy operation i Ψ/ t = ωψ then relates energy to frequency, E = ω, and the momentum operation ( /i) Ψ/ x = kψ relates momentum to wave number, p = k. D. Dubbers, H.-J. Stöckmann, Quantum Physics: The Bottom-Up Approach, Graduate Texts in Physics, DOI 10.1007/978-3-64-31060-7_1, Springer-Verlag Berlin Heidelberg 013 3

4 1 Recollections from Elementary Quantum Physics The probability amplitude Ψ(x,t)for finding the particle at time t at position x and the amplitude Φ(p,E) for finding it with energy E and momentum p turn out to be Fourier transforms of each other. Pairs of Fourier transforms have widths that are reciprocal to each other. If the width x in position is large, the width p in momentum is small, and vice versa, and the same for the widths t and E. The conjugate observables p and x or E and t obey the uncertainty relations p x 1, E t 1. (1.4) The exact meaning of x, etc. will be defined in Sect. 3.4. For stationary, that is, time independent potentials V(x), the Hamilton operator (1.) acts only on the position variable x. The solution of the Schrödinger equation then is separable in x and t, Ψ(x,t)= ψ(x)e iet/. (1.5) The probability density (in units of m 1 ) for finding a particle at position x then is independent of time Ψ(x,t) = ψ(x). The amplitude ψ(x) is a solution of the time independent Schrödinger equation In operator notation, this reads ψ(x) M x + V(x)ψ(x) = Eψ(x). (1.6) Hψ = Eψ. (1.7) For particles trapped in a potential well V(x), the requirement that total probability is normalizable to + ψ(x) dx = 1 (1.8) leads to the quantization of energy E such that only a discrete set of values E n, with the corresponding wave functions ψ n (x), n = 1,, 3,..., is allowed. n is called the main quantum number. The mean value derived from repeated measurements of a physical quantity or observable A is given by its expectation value + A(t) = Ψ (x, t)aψ (x, t) dx. (1.9) For a stationary state Eq. (1.5), the expectation value A does not depend on time and is insensitive to any phase factor e iϕ. For example, the mean position x of a matter wave is given by the weighted average x = + x ψ(x) dx. (1.10)

1 Recollections from Elementary Quantum Physics 5 Sometimes the Hamiltonian H can be divided into two parts H = H 1 (x) + H (y), one depending on one set of (not necessarily spatial) variables x, the other on a disjoint set of variables y. Then, as shown in standard textbooks, the solution of the Schrödinger equation is separable in x and y as ψ(x, y) = ψ 1 (x)ψ (y). Asin Eq. (1.5), we must attach a phase factor to obtain the time dependent solution Ψ(x, y,t)= ψ 1 (x)ψ (y)e iet/. (1.11) The probability densities for the joint occurrence of variable x and variable y then multiply to Ψ(x, y,t) = ψ1 (x) ψ (y). (1.1) This is consistent with classical probability theory, where probabilities multiply for independent events. The probability that two dice both show 5 is 1 6 1 6 = 1 36. If, on the other hand, the quantum system can evolve along two mutually exclusive paths ψ 1 or ψ, as is the case in the famous double-slit experiments, then the two probability amplitudes add coherently, and the total probability is Ψ = ψ 1 + ψ = ψ 1 + ψ + ψ 1 ψ sin δ, (1.13) with phase angle δ. Only if phase coherence between the partial waves ψ 1 and ψ is lost, does the total probability equal the classical result Ψ = ψ 1 + ψ, (1.14) with probabilities adding for mutually exclusive events. The probability that a die showseither5or3is 1 6 + 1 6 = 1 3. Figure 1.1 shows the setup and result of a double-slit experiment with a beam of slow neutrons. What we see is the self-interference of the probability amplitudes ψ 1 and ψ of single neutrons. The conditions for the appearance of quantum interference will be discussed in Sect. 6.6. For most students the Schrödinger equation is no more difficult than the many other differential equations encountered in mechanics, electrodynamics, or transport theory. Therefore, students usually have fewer problems with the ordinary Schrödinger equation than with a presentation of quantum mechanics in the form of matrix mechanics. In everyday scientific life, however, spectroscopic problems that require matrix diagonalization are more frequent than problems like particle waves encountering step potentials and other scattering problems. Furthermore, as we shall see in Sect. 19.1., the Schrödinger equation can always equally well be expressed as a matrix equation. Therefore, matrix mechanics is the main topic of the present tutorial. Instead of starting with the Schrödinger equation, we could have started with the Heisenberg equation of motion (discovered a few weeks before the Schrödinger equation) because both are equivalent. We postpone the introduction of Heisenberg s equation to Chap. 10 because students are less familiar with this approach.

6 1 Recollections from Elementary Quantum Physics Fig. 1.1 (a) Double-slit experiment with neutrons: The monochromatic beam (along the arrow), of de Broglie wave length λ = nm, λ/λ = 8 %, meets two slits, formed by a beryllium wire (shaded circle) and two neutron absorbing glass edges (vertical hatching), installed on an optical bench of 10 m length with 0 µm wide entrance and exit slits. (b) The measured neutron self-interference pattern follows theoretical expectation. From Zeilinger et al. (1988) To begin we further assume acquaintance with some basic statements of quantum physics that are both revolutionary and demanding, and our hope is that the reader of this text will learn how to live and work with them. The first statement is: To any physical observable A corresponds an operator A. The measurement of the observable A leaves the system under study in one of the eigenstates or eigenfunctions ψ n of this operator such that Aψ n = a n ψ n. (1.15) The possible outcomes of the measurement are limited to the eigenvalues a n. Which of these eigenfunctions and eigenvalues is singled out by the measurement is uncertain until the measurement is actually done. If we regard the ordered list ψ n as elements of a vector space, called the Hilbert space, the operation A just stretches an eigenvector ψ n of this space by a factor a n. The best-known example of an eigenvalue equation of this type is the time independent Schrödinger equation Hψ n = E n ψ n. (1.16) H is the operator for the observable energy E, ψ n are the eigenfunctions of energy, and E n are the corresponding eigenvalues. In this text, we shall only treat the simplest case where the spectrum of the E n is discrete and enumerable, as are atomic energy spectra, and in most cases limit the number of energy levels to two. Another basic statement is derived in Sect. 3.4: Two physical quantities, described by operators A and B, can assume well defined values a n and b n, simultaneously measurable with arbitrarily high precision and unhampered by any uncertainty relation, if and only if they share a common set of eigenfunctions ψ n, with Aψ n = a n ψ n, Bψ n = b n ψ n. (1.17)

1 Recollections from Elementary Quantum Physics 7 An important operator is that of the angular momentum J, which we shall derive from first principles in Chap. 16. Let us beforehand recapitulate the following properties of J, as known from introductory quantum physics. The components J x, J y, and J z of the angular momentum operator J cannot be measured simultaneously to arbitrary precision. Only the square magnitude J of the angular momentum and its component J z along an arbitrary axis z are well defined and can be measured simultaneously without uncertainty. This means that the phase of J about this axis z remains uncertain. The operators of the two observables J and J z then must have simultaneous eigenfunctions that we call ψ jm, which obey J ψ jm = j(j + 1) ψ jm, J z ψ jm = m ψ jm, (1.18a) (1.18b) with eigenvalues j(j + 1) and m, respectively. Angular momentum is quantized, with possible angular momentum quantum numbers j = 0, 1, 1, 3,... For a given value of j, themagnetic quantum number m can take on only the j + 1 different values m = j, j + 1,...,j. For j = 1 we have m =±1 and J ψ 1,± 1 J z ψ 1,± 1 = 3 4 ψ 1,± 1, (1.19a) =± 1 ψ 1,± 1. (1.19b) If we arrange the j + 1 eigenfunctions of the angular momentum ψ jm into one column ψ j,j ψ j,j 1 ψ j =., (1.0) ψ j, j we shall print this column vector ψ j in nonitalic type, as we did for the operators. The corresponding row vector is ψ j = (ψ j,j,ψ j,j 1,...,ψ j, j ), where the dagger signifies the conjugate transpose ψ = ψ T of a complex vector (or matrix). The components J x and J y of the angular momentum operator J do not have simultaneous eigenfunctions with J and J z. If we form the linear combinations J + = J x + ij y, J = J x ij y, (1.1) these operators are found to act on the angular momentum state ψ jm as J + ψ jm = j(j + 1) m(m + 1)ψ j,m+1, J ψ jm = j(j + 1) m(m 1)ψ j,m 1, (1.a) (1.b)

8 1 Recollections from Elementary Quantum Physics with J + ψ j,+j = 0 and J ψ j, j = 0. The J + and J are the raising and lowering operators, respectively. For j = 1 we have J +ψ 1, 1 = ψ 1,+ 1 and J ψ 1,+ 1 = ψ 1, 1. Angular momentum may be composed of the orbital angular momentum L and of spin angular momentum S, which can be added to the total angular momentum J = L + S. The orbital angular momentum quantum number l can only have integer values, spin quantum number s can have either integer or half-integer values. The triangle rule of vector addition tells us that the (integer or half-integer) angular momentum quantum number j has the allowed range The total angular momentum quantum number is l s j l + s. (1.3) m = m l + m s, (1.4) going in unit steps from m = j to m = j. For example, two angular momenta with l = 1 and s = 1 can be added to j = 1 or j = 3.Forl = 0, j = s we have m = m s, and for s = 0, j = l we have m = m l. For the sake of simplicity, in these two special cases we shall always write m for the respective magnetic quantum numbers m s or m l. References Zeilinger, A., Gähler, R., Shull, C.G., Treimer, W., Mampe, W.: Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067 1073 (1988)

http://www.springer.com/978-3-64-31059-1