TROPICAL METEOROLOGY Ocean-Atmosphere Interaction and Tropical Climate Shang-Ping Xie OCEAN-ATMOSPHERE INTERACTION AND TROPICAL CLIMATE

Similar documents
JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN

An Introduction to Coupled Models of the Atmosphere Ocean System

the 2 past three decades

Development Processes of the Tropical Pacific Meridional Mode

Downscaling Global Warming with a Regional Ocean- Atmosphere Model over the Tropical Atlantic

Lecture 8: Natural Climate Variability

C

The Planetary Circulation System

Winds and Global Circulation

UC Irvine Faculty Publications

East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon

lecture 10 El Niño and the Southern Oscillation (ENSO) Part I sea surface height anomalies as measured by satellite altimetry

Ocean-Atmosphere Interactions and El Niño Lisa Goddard

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7

Ocean Mixing and Climate Change

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

Dynamics and Kinematics

Simulated variability in the mean atmospheric meridional circulation over the 20th century

lecture 11 El Niño/Southern Oscillation (ENSO) Part II

Geophysics Fluid Dynamics (ESS228)

KUALA LUMPUR MONSOON ACTIVITY CENT

Forced and internal variability of tropical cyclone track density in the western North Pacific

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

LETTERS. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño

Weather & Ocean Currents

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

Research Highlights 1. Climate formation. 2. Tropical Atlantic variability

Atmospheric Circulation Cells Associated with the El Niño Southern Oscillation

TROPICAL-EXTRATROPICAL INTERACTIONS

Lecture 28. El Nino Southern Oscillation (ENSO) part 5

CHINESE JOURNAL OF GEOPHYSICS. Analysis of the characteristic time scale during ENSO. LIU Lin 1,2, YU Wei2Dong 2

Interannual Variability of the Coupled Tropical Pacific Ocean Atmosphere System Associated with the El Niño Southern Oscillation

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS

Tropical Cyclone Genesis: What we know, and what we don t!

A Dynamic Ocean Atmosphere Model of the Tropical Atlantic Decadal Variability

Introduction to Meteorology & Climate. Climate & Earth System Science. Atmosphere Ocean Interactions. A: Structure of the Ocean.

The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO

Earth s Climate Patterns

Climate and the Atmosphere

Methods of assessing the performance of IPCC-AR4 models in simulating Australian rainfall teleconnections with Indo-Pacific climate drivers

Patterns and impacts of ocean warming and heat uptake

Interhemispheric climate connections: What can the atmosphere do?

A mechanism for the multi-decadal climate oscillation in the North Pacific

Relationships between Extratropical Sea Level Pressure Variations and the Central- Pacific and Eastern-Pacific Types of ENSO

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 5: Atmospheric General Circulation and Climate

Twentieth-Century Sea Surface Temperature Trends M.A. Cane, et al., Science 275, pp (1997) Jason P. Criscio GEOS Apr 2006

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015

Scholarly Paper. Coupled Instability in the Equatorial Pacific Ocean

Role of the Indian Ocean SST anomalies in the coupling of the Atmosphere and Ocean

The critical role of the boreal summer mean state in the development of the IOD

The Madden Julian Oscillation in the ECMWF monthly forecasting system

Causes of the El Niño and La Niña Amplitude Asymmetry in the Equatorial Eastern Pacific

Wind: Global Systems Chapter 10

SE Atlantic SST variability and southern African climate

ATMOSPHERIC MODELLING. GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13

The feature of atmospheric circulation in the extremely warm winter 2006/2007

Lecture 1. Amplitude of the seasonal cycle in temperature

John Steffen and Mark A. Bourassa

NOTES AND CORRESPONDENCE. El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico

Quasi-Biennial Oscillation Modes Appearing in the Tropical Sea Water Temperature and 700mb Zonal Wind* By Ryuichi Kawamura

Variability of Atlantic Ocean heat transport and its effects on the atmosphere

Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models

Lecture 2 ENSO toy models

Baoqiang Xiang 1, Bin Wang 1,2, Weidong Yu 3, Shibin Xu 1,4. Accepted Article

Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

El Niño: How it works, how we observe it. William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory

Ocean Circulation Influences on Sea Surface Temperature in the Equatorial Central Pacific

Seasonal Climate Watch January to May 2016

MAR110 LECTURE #22 Climate Change

Ocean Dynamics, Thermocline Adjustment, and Regulation of Tropical SST

Analysis of Fall Transition Season (Sept-Early Dec) Why has the weather been so violent?

Air-sea humidity effects on the generation of tropical Atlantic SST anomalies during the ENSO events

Yuko M. Okumura. Education. Research Interests. Appointments

Investigate the influence of the Amazon rainfall on westerly wind anomalies and the 2002 Atlantic Nino using QuikScat, Altimeter and TRMM data

U.S. CLIVAR VARIATIONS

Inter-model variations in projected precipitation. change over the North Atlantic: Sea surface. temperature effect

A Global Survey of Ocean Atmosphere Interaction and Climate Variability

Chapter outline. Reference 12/13/2016

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

MPACT OF EL-NINO ON SUMMER MONSOON RAINFALL OF PAKISTAN

Climate modeling: 1) Why? 2) How? 3) What?

Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models

Steven Feldstein. The link between tropical convection and the Arctic warming on intraseaonal and interdecadal time scales

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Potential of Equatorial Atlantic Variability to Enhance El Niño Prediction

University of Reading, Reading, United Kingdom. 2 Hadley Centre for Climate Prediction and Research, Meteorological Office, Exeter, United Kingdom.

Introduction to Climate ~ Part I ~

Role of the SST coupling frequency and «intra-daily» SST variability on ENSO and monsoon-enso relationship in a global coupled model

Influence of reducing weather noise on ENSO prediction

An Interconnected Planet

Dynamics of the Extratropical Response to Tropical Heating

Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas

A Coupled Atmosphere Ocean GCM Study of the ENSO Cycle

Transcription:

OCEAN-ATMOSPHERE INTERACTION AND TROPICAL CLIMATE Shang-Ping Xie International Pacific Research Center and Department of Meteorology University of Hawaii, Honolulu, HI 96822, USA Keywords: ocean-atmospheric feedback, tropical climate, climate variability, Intertropical convergence zone, clouds, surface evaporation Contents 1. Introduction 2. Bjerknes feedback 3. Wind-evaporation-SST feedback 4. Cloud feedback 5. Water vapor feedback 6. Ocean front-atmosphere interaction 7. Coupled Ocean-Atmosphere Model 8. Conclusion Acknowledgments Glossary Bibliography Biographical Sketch Summary The ocean and atmosphere are in constant exchange of heat, water, and momentum. The interaction of the ocean and atmosphere adds shades and rhythms in the structure of tropical climate. Ocean-atmosphere interaction research has experienced rapid growth in studying El Nino/Southern Oscillation (ENSO), and yielded tremendous societal benefits by enabling and improving the prediction of ENSO and important modes of climate variability. This chapter reviews major ocean-atmospheric feedbacks that give rise to ENSO and other variations in tropical climate. 1. Introduction Solar radiation is the ultimate source of energy for motions in the atmosphere and ocean. Most absorption of solar radiation takes place on the Earth surface, the majority of which is occupied by oceans. Thus oceanic conditions, sea surface temperature (SST) in particular, are important for atmospheric temperature conditions and circulation. Fueled by water vapor evaporated from the surface, deep convection in cumulonimbus clouds and resultant condensation and freezing are the dominant mechanism for heating the atmosphere. Atmospheric convection is strongly regulated by SST on the one hand and affects the ocean on the other by modulating surface momentum and heat fluxes. Latent heating in atmospheric convection drives surface winds and modulates cloud cover. Surface winds drive ocean circulation and affect ocean surface heat flux while

clouds modulate surface radiative flux. Thus, the ocean and atmosphere are a coupled system and their interaction helps shape tropical climate and its variability. Examples are abundant. Figure 1a shows the climatology of precipitation and SST. While the annual-mean solar radiation at the top of the atmosphere (TOA) is zonally uniform and symmetric about the equator, rainfall and SST are highly asymmetric both in the east-west and north-south directions. On the equator, SST in the eastern Pacific (say, near the Galapagos Islands, 90 o W, equator) features a pronounced annual cycle with the maximum in March (Figure. 2) despite a TOA solar radiation dominated by a semi-annual cycle. Such departures in space and time from the solar radiation distribution are the result of ocean-atmosphere interaction. Figure 1. Annual-mean climatology: (a) SST (black contours at 1 C intervals; contours of SST greater than 27 C thickened) and precipitation (white contours at 2 mm/day; shade > 4 mm/day); (b) surface wind stress vectors (Nm -2 ) and the 20 C isotherm depth (contours at 20 m intervals; shade < 100 m). This Topic concerns major ocean-atmospheric feedbacks important for spatial and temporal variations of tropical climate. They involve changes in cloud cover, surface evaporation, and ocean dynamical adjustments. The scope of this review is limited to ocean-atmosphere interaction operating on large (>100 km) spatial and long (> 1 week) temporal scales. While variability on weather and shorter timescales and beyond the instrumental record is not covered, the feedback mechanisms discussed here are expected to operate for paleoclimate variability (Chiang et al. 2003; Timmermann et al. 2007) and future climate change (Vecchi and Soden 2007). For a more comprehensive discussion of ocean-atmosphere interaction and its applications, readers are referred to a recent monograph on this topic (Wang et al. 2004).

Figure 2. Seasonal cycle in the equatorial Pacific: SST (contours in C) and surface wind velocity (vectors in m/s). 2. Bjerknes Feedback Strong east-west asymmetry is found over the equatorial Pacific, characterized by the Walker circulation (with the easterly winds at the surface) in the atmosphere and the cold tongue in SST (Figure. 1a). To a lesser extent, similar asymmetry is observed over the equatorial Atlantic. Under easterly winds, surface ocean currents flow poleward a few degrees away from the equator following the Ekman dynamics. The divergence of these poleward Ekman flows requires water to upwell into the surface layer on the equator. If the thermocline is close to the surface, this equatorial upwelling brings the cold thermocline water into the mixed layer, causing an SST cooling. On the equator where the Coriolis force vanishes, surface ocean currents flow in the wind direction, resulting in the westward South Equatorial Current (SEC) in the Pacific and Atlantic. The equatorial upwelling and the westward (SEC) shoals the thermocline in the east and deepens it in the west (Figure. 1b). In steady state on the equator, the easterly wind stress is nearly balanced by the

pressure gradient force associated with the eastward shoaling of the thermocline. From an oceanographic point of the view, the easterly winds shoal the thermocline eastward and induce the equatorial upwelling, keeping the eastern basin cool. From a meteorological point of the view, on the other hand, the eastward SST cooling limits deep convection to the west and maintains a sea pressure gradient that drives the easterly winds along the equator. This circular argument indicates that oceanatmosphere interaction is at the heart of the cold tongue formation. The feedback may be described as follows (Figure. 3). Let us begin with modest easterly winds over the equatorial Pacific, which induce upwelling and tilt the thermocline, both acting to cool the eastern ocean and suppressing atmospheric convection there. This reduction in deep convection in the east raises sea level pressure, intensifying the initial easterly winds at the surface. The amplification of the initial perturbation indicates a positive feedback resulting from ocean-atmosphere interaction. Figure 3. Schematic for Bjerknes feedback. Bjerknes (1969) first proposed this feedback hypothesis for El Nino/the Southern Oscillation (ENSO), to which Wyrtki (1975) added the thermocline adjustment. Therefore it is also called the Bjerknes-Wyrtki feedback. The thermocline depth in the eastern Pacific controls how much equatorial upwelling cools SST, and is determined by the transport of warm upper-ocean water above the thermocline between the east and west, and in and out of the equatorial belt. Such warm water transport, governed by large-scale ocean wave dynamics, is essential for ENSO (see Topic xx in this Theme). In coupled ocean-atmosphere models, the most unstable or least damped mode often displays an interannual cycle of SST warming and cooling in the eastern basin, with the deepening and shoaling of the thermocline, respectively. Besides ENSO, such a Bjerknes mode of coupled ocean-atmospheric variability is observed in the equatorial Atlantic and Indian Oceans on interannual timescales (Chang et al. 2006). The equatorial cold tongue displays annual expansion and retreat in July-September and February-April (Figure. 2), respectively, over the Pacific and Atlantic. This annual cycle in SST is forced by that in meridional wind superimposed on the annual-mean southerly cross-equatorial winds, the latter being part of meridional climatic asymmetry. During

July-September, the southerlies intensify in response to the seasonal warming (cooling) in the Northern (Southern) Hemisphere, enhancing the upwelling cooling in the equatorial belt (Mitchell and Wallace 1992). Conversely, the relaxed southerlies cause equatorial SST to warm up during February-April. Unlike ENSO, thermocline adjustments are of a secondary importance for the annual cycle but the interaction of SST and surface winds causes a westward phase propagation of the annual cycle. - - - Bibliography TO ACCESS ALL THE 13 PAGES OF THIS CHAPTER, Visit: http://www.eolss.net/eolss-sampleallchapter.aspx Bjerknes, J., (1969) Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163 172. [The pioneering work showing that ocean-atmosphere interaction is at the heart of ENSO.] Chang, P., T. Yamagata, P. Schopf, S. K. Behera, J.A. Carton, W. S. Kessler, G. Meyers, T. Qu, F.A. Schott, S. Shetye, and S.-P. Xie, (2006) Climate fluctuations of tropical coupled system: The role of ocean dynamics. J. Climate, 19, 5122-5174. [A recent review on the role of tropical oceans in climate variability.] Chiang, J. C. H., M. Biasutti, and D. S. Battisti, (2003) Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions, Paleoceanography, 18, 1094, doi:10.1029/2003pa000916. [A modeling study documenting the ocean-atmosphere coupled response to ice age forcing.] Fu, X., B. Wang, T. Li, and J.P. McCreary, (2003) Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 1733 1753. [A modeling study demonstrating the importance of ocean-atmosphere interaction for atmospheric intraseasonal variability.] Hall, A., and S. Manabe, (1999) The Role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 2327-2346. [A modeling study evaluating the importance of water vapor feedback for climate variability and global warming.] Klein, S.A. and D.L. Hartmann, (1993) The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587-1606. [An observational study documenting the climatology and interannual variability of low clouds.] Mitchell, T.P., and J.M. Wallace, (1992) The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 1140 1156. [An observational description of the mysterious annual cycle on the equator.] Small, R. J., S. deszoeke, S. P. Xie, L. O'Neill, H. Seo, Q. Song, P. Cornillon, M. Spall, and S. Minobe, (2008) Air-sea interaction over ocean fronts and eddies. Dynam. Atmos. Oceans, in press. [A recent review on the rapidly expanding literature on ocean front-atmosphere interaction.] Timmermann, A., Y. Okumura, S.-I. An, A. Clement, B. Dong, E. Guilyardi, A. Hu, J. Jungclaus, U. Krebs, M. Renold, T.F. Stocker, R.J. Stouffer, R. Sutton, S.-P. Xie, J, Yin, (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899-4919. [A modeling study of the global propagation of climatic anomalies when the global conveyor belt comes to a halt, a scenario depicted in the movie The Day after Tomorrow.] Vecchi, G.A., and B.J. Soden, (2007) Global warming and the weakening of the tropical circulation. J.

Climate, 20, 4316 4340. [A modeling study of how atmospheric and ocean circulations will change in a global warming scenario.] Vimont, D.J., J.M. Wallace, and D.S. Battisti, (2003) The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668 2675. [An observational study of how extratropical anomalies can influence tropical climate via ocean-atmosphere interaction.] Wang, C., S.-P. Xie, and J.A. Carton, (2004) Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monograph, 147, AGU, Washington D.C., pp. 414. [A monograph summarizing recent advance in ocean-atmosphere interaction from ENSO to extratropical storm tracks.] Wyrtki, K., (1975) El Niño The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572 584. [A pioneer study illustrating the importance of ocean wave adjustments for ENSO.] Xie, S.-P. and S.G.H. Philander, (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340-350. [This paper proposes the WES feedback and studies its role in displacing the ITCZ northward.] Biographical Sketch Shang-Ping Xie received B.Sc. from Shandong College of Oceanography, China in 1984 and Ph.D. from Tohoku University, Japan in 1991. He was on the faculty of Hokkaido University, Japan and is currently professor at University of Hawaii, where he leads Indo-Pacific ocean climate research at the International Pacific Research Center. He is editor of Journal of Climate. He received the Yamamoto-Shyono and Society Medals from the Meteorological Society of Japan in recognition of his contributions to oceanatmosphere interaction and climate research. He was a contributing author for the third assessment report of the Intergovernmental Panel for Climate Change, a scientific body that won the 2007 Nobel Peace Prize. His interests include climate formation, variability, and change, especially the role of oceanatmosphere.