GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (Sample) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Similar documents
Sample Test 3. STUDENT NAME: STUDENT id #:

Sample Test 3. STUDENT NAME: STUDENT id #:

12/01/10. STUDENT NAME: STUDENT id #: NOTE: Clearly write out solutions and answers (circle the answers) by section for each part (a., b., c., etc.

Announcements. 30 o. The pumpkin is on the left and the watermelon is on the right. The picture on page 138 is better.

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (04/29/13) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Work, Energy, and Power

ME 236 Engineering Mechanics I Test #4 Solution

Physics 102. Final Examination. Spring Semester ( ) P M. Fundamental constants. n = 10P

Q x = cos 1 30 = 53.1 South

Kinetics of Particles. Chapter 3

PH2200 Practice Exam I Summer 2003

Chapter 5: Force and Motion I-a

Solution to HW14 Fall-2002

Lecture 2: Single-particle Motion

Phys101 Second Major-061 Zero Version Coordinator: AbdelMonem Saturday, December 09, 2006 Page: 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Harmonic Motion (HM) Oscillation with Laminar Damping

2015 Regional Physics Exam Solution Set

Study Guide Physics Pre-Comp 2013

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

f = µ mg = kg 9.8m/s = 15.7N. Since this is more than the applied

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1

Sample Test 2. GENERAL PHYSICS PH 221-3A (Dr. S. Mirov) Test 2 (10/10/07) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

AP Physics Kinematic Wrap Up

Solutions to Problems. Then, using the formula for the speed in a parabolic orbit (equation ), we have

Honors Physics Final Review Summary

i-clicker i-clicker Newton s Laws of Motion First Exam Coming Up! Components of Equation of Motion

g r mg sin HKPhO 香港物理奧林匹克 2014 Multiple Choices:

CHAPTER 6 WORK AND ENERGY

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

PHYSICS LAB Experiment 10 Fall 2004 ROTATIONAL DYNAMICS VARIABLE I, FIXED

Springs in parallel. Two springs in parallel. Springs in series. Springs in series. Resonance. Forced vibrations and resonance. 2 C. 2 1/2 m.

CHAPTER 8b Static Equilibrium Units

= m. Suppose the speed of a wave on a string is given by v = Κ τμ

SIMPLE NUMERICAL METHOD FOR KINETICAL INVESTIGATION OF PLANAR MECHANICAL SYSTEMS WITH TWO DEGREES OF FREEDOM

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Chapter 4 Motion in Two and Three Dimensions

i-clicker!! x 2 lim Lecture 3 Motion in 2- and 3-Dimensions lim REVIEW OF 1-D MOTION

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

As we have already discussed, all the objects have the same absolute value of

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

PHYS 314 HOMEWORK #3

5.1 Properties of Inverse Trigonometric Functions.

PHYS 219 Spring semester Lecture 02: Coulomb s Law how point charges interact. Ron Reifenberger Birck Nanotechnology Center Purdue University

ENGI 4430 Parametric Vector Functions Page 2-01

Physics 321 Solutions for Final Exam

Torque and Angular Momentum

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

( ) WYSE ACADEMIC CHALLENGE Regional Physics Exam 2009 Solution Set. 1. Correct answer: D. m t s. 2. Correct answer: A. 3.

Study Guide: PS. 10 Motion, Forces, Work & Simple Machines DESCRIBING MOTION SPEED

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it

Question 2-1. Solution 2-1 CHAPTER 2 HYDROSTATICS

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

Chapter II Newtonian Mechanics Single Particle

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

NGSS High School Physics Domain Model

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Chapter 3 Kinematics in Two Dimensions; Vectors

Conceptual Dynamics SDC. An Interactive Text and Workbook. Kirstie Plantenberg Richard Hill. Better Textbooks. Lower Prices.

MAT 1275: Introduction to Mathematical Analysis

WYSE Academic Challenge 2004 Sectional Physics Solution Set

Trigonometry, 8th ed; Lial, Hornsby, Schneider

Physic 231 Lecture 12

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

Correct answer: 0 m/s 2. Explanation: 8 N

Chapter 2 GAUSS LAW Recommended Problems:

NWACC Dept of Mathematics Dept Final Exam Review for Trig - Part 3 Trigonometry, 9th Edition; Lial, Hornsby, Schneider Fall 2008

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support.

1 Course Notes in Introductory Physics Jeffrey Seguritan

Lecture 5: Equilibrium and Oscillations

WYSE Academic Challenge Sectional Physics 2007 Solution Set

( ) ( ) Pre-Calculus Team Florida Regional Competition March Pre-Calculus Team Florida Regional Competition March α = for 0 < α <, and

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

Equilibrium of Stress

CHAPTER 1 -- MATH REVIEW

Lecture 11 DAMPED AND DRIVEN HARMONIC OSCILLATIONS. Composition of harmonic oscillations (1) Harmonic motion diff. equation is: -linear -uniform

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Fundamental Concepts in Structural Plasticity

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Professional Development. Implementing the NGSS: High School Physics

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system

Work, Energy, and Power. AP Physics C

Chapter 32. Maxwell s Equations and Electromagnetic Waves

PRE-BOARD MATHEMATICS-1st (Held on 26 December 2017)

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

CHAPTER 6 -- ENERGY. Approach #2: Using the component of mg along the line of d:

PHYS 601 HW3 Solution

SPH3U1 Lesson 06 Kinematics

ME 141. Lecture 10: Kinetics of particles: Newton s 2 nd Law

PHYSICS Unit 3 Trial Examination

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

Thermochemistry. Thermochemistry

Transcription:

GENERAL PHYSICS PH -D (Dr. S. Mirv) Test 4 (Sple) STUDENT NAME: Ke STUDENT id #: ------------------------------------------------------------------------------------------------------------------------------------------- ALL QUESTIONS ARE WORTH 0 POINTS. WORK OUT FIVE PROBLEMS. NOTE: Clerl write ut slutins nd nswers (circle the nswers) b sectin r ech prt (., b., c., etc.) Iprtnt Fruls:. Mtin lng stright line with cnstnt ccelertin v ver. speed = [dist. tken]/[tie trv.]=s/t; v ver.vel. = /t; v ins =d/t; ver. = v ver. vel. /t; = dv/t; v = v + t; = /(v +v)t; = v t + / t ; v = v + (i =0 t t =0). Free ll tin (with psitive directin ) g = 9.80 /s ; = v ver. t v ver. = (v+v )/; v = v - gt; = v t - / g t ; v = v g (i =0 t t =0) 3. Mtin in plne v = v cs; v = v sin; = v t+ / t ; = v t + / t ; v = v + t; v = v + t; 4. Prjectile tin (with psitive directin ) v = v = v cs; = v t; = ( v sin cs)/g = (v sin)/g r in = in ; v = v - gt = v sin - gt; = v t - / gt ; 5. Unir circulr Mtin =v /r, T=r/v 6. Reltive tin v P A v P B v B A PA PB 7. Cpnent ethd vectr dditin

A = A + A ; A = A + A nd A = A + A ; A A A ; = tn - A /A ; The sclr prduct A b = b c s b ( ˆ ˆ ˆ) ( ˆ ˆ ˆ i j zk b i b j b zk ) b = b b zb z The vectr prduct b ( ˆ ˆ ˆ) ( ˆ ˆ ˆ i j zk b i b j b zk ) iˆ ˆj kˆ z ˆ ˆ z ˆ b b z i j k b b z b b b z b b b b z ( b b ) iˆ ( b b ) ˆj ( b b ) kˆ z z z z. Secnd Newtn s Lw =F net ;. Kinetic rictin k = k N; 3. Sttic rictin s = s N; 4. Universl Lw Grvittin: F=GM/r ; G=6.670 - N /kg ; 5. Drg ceicient D C A v 6. Terinl speed v t g C A 7. Centripetl rce: F c =v /r 8. Speed the stellite in circulr rbit: v =GM E /r 9. The wrk dne b cnstnt rce cting n n bject: W F d cs F d 0. Kinetic energ: K v. Ttl echnicl energ: E=K+U. The wrk-energ there: W=K -K ; W nc =K+U=E -E 3. The principle cnservtin echnicl energ: when W nc =0, E =E 4. Wrk dne b the grvittinl rce: W g d cs g

. Wrk dne in Liting nd Lwering the bject: K K K W W ; i K K ; W W i g i g. Spring Frce: F k (H k's lw ) 3. Wrk dne b spring rce: W k k ; i 0 nd ; W k s i i s 4. Wrk dne b vrible rce: W F ( ) d W d W 5. Pwer: P vg ; P ; P F v cs F v t d t 6. Ptentil energ: U W ; U F ( ) d 7. Grvittinl Ptentil Energ: U g ( ) g ; i 0 n d U 0 ; U ( ) g i i i i i 8. Elstic ptentil Energ: U ( ) k 9. Ptentil energ curves: du ( ) F ( ) ; K ( ) E e c U ( ) d 0. Wrk dne n sste b n eternl rce: F ric ti n is n t in v lv e d W h e n k in e tic ric ti n rc e c ts w ith in th e s ste E d th k W E K U e c W E E e c th. Cnservtin energ: W E E E E e c th r islted sste (W =0) E E E 0 in t e c th in t E. Pwer: P vg ; t P de d t ; 3. Center ss: r r n c i i M i 4. Newtns Secnd Lw r sste prticles: F net M c 3

. Liner Mentu nd Newtn s Secnd lw r sste prticles: P M v nd F c net dp dt t. Cllisin nd ipulse: J F ( t ) d t; J F t; t i vg when stre bdies with ss nd n n speed v, cllides with bd whse psitin is ied F vg p v v t t t Ipulse-Liner Mentu There: p p i J 3. Lw Cnservtin Liner entu: P P r clsed, islted sste 4. Inelstic cllisin in ne diensin: p p p p i i i 5. Mtin the Center Mss: The center ss clsed, islted sste tw clliding bdies is nt ected b cllisin. 6. Elstic Cllisin in One Diensin: v v ; v v i i 7. Cllisin in Tw Diensins: p p p p ; p p p p i i i i 8. Vrible-ss sste: Rv rel v v v M (irst rcket equtin) i r e l M i ln (secnd rcket equtin) M S 9. Angulr Psitin: (rdin esure) r 0. Angulr Displceent: (p sitiv e r c u n terclc k w ise r ttin ) d. Angulr velcit nd speed: vg ; (p sitive r c u n tercl ck w ise rtti n ) t d t. Angulr ccelertin: vg ; t d d t 4

t ( ) t. ngulr ccelertin: t t ( ) t t. Liner nd ngulr vribles relted: I r d v r s r ; v r ; t r ; r r ; T r v 3. Rttinl Kinetic Energ nd Rttinl Inerti: K I ; I iri r bd s sste discrete prticles; r b d w ith c n tin u u sl d istrib u te d ss. 4. The prllel es there: I I c M h 5. Trque: rf r F rf sin t 6. Newtn s secnd lw in ngulr r: net I 7. Wrk nd Rttinl Kinetic Energ: W d ; W ( ) r cnst; i i dw P K K K I I W dt ; i i w rk e n e rg th e re r r t tin g b d ie s v c R K I c v 8. Rlling bdies: c R g sin c I / M R c c r r llin g s th l d w n th e r p 9. Trque s vectr: r F ; rf sin rf r F 5

l r p ( r v ) ;. Angulr Mentu prticle: l r v sin r p r v r p r v dl. Newtn s Secnd lw in Angulr Fr: net dt n L l i i 3. Angulr entu sste prticles: dl net et dt 4. Angulr Mentu Rigid Bd: L I 5. Cnservtin Angulr Mentu: L L (is l te d s ste ) 6. Sttic equilibriu: 7. Elstic Mduli: stress= dulus strin i F net 0; net 0 i ll the rces lie in plne F 0; F 0; 0 F L 8. Tensin nd Cpressin: E, E is the Y ung's dulus A L F L 9. Shering: G, G is the sher dulus A L V 0. Hdrulic Stress: p B, B is th e b u lk d u lu s V net, net, net, z. Siple hrnic tin: t v t t cs( ); sin( ); cs( ) k. The Liner Oscilltr:, T k 3. Pendulus: T T I k, trsin pendulu L g, si ple pendulu T I, phsicl pendulu g h 6

. Dped Hrnic Mtin: bt k b ( t ) e c s ( ' t ), ', E ( t ) k e 4 bt. Sinusidl wves: (, t ) sin( k t ), k,, v T k T 3. Wve speed n stretched string: v 4. Averge pwer trnsitted b sinusidl wve n stretched string: P vg v 5. Intererence wves: '(, t ) [ c s ] s in ( k t ) 6. Stnding wves: '(, t ) [ s in k ] c s t v v 7. Resnnce: n, r n,,3,... L B 8. Sund wves: v, L ( ) r 0,,,3..., cnstructive intererence 9. Intererence: L ( ) r 0,,,3..., destructive intererence 0. Sund Intensit: P P s I, I v s, I A 4 r. Sund level in decibels: I ( 0 db ) l g, I 0 W / I. Stnding wve ptterns in pipes: v n v L, n,,3,..., r pipe pened r bth ends v n v 4 L, n,3,5,..., r pipe clsed t ne end nd pened t the ther 3. Bets: bet 7

vr. The Dppler eect: ' ( ) v sund;(v s =33/s); ' v E v s vs vr ' generl Dppler Eect v v s E, v R the speed the receiver; v s the speed the s + r receiver pprching sttinr eitter, - r receiver ving w r the sttinr eitter;, v E the speed the eitter, v s the speed the sund, - r eitter pprching sttinr receiver, + r eitter ving w r the sttinr receiver; 8

9

. Yur grndther clck s pendulu hs length 0.9930. i the clck lses hl inute per d, hw shuld u djust the length the pendulu? L Fr siple pendulu T g Suppse clck's pendulu scilltes "n" ties in d. nt (4 3600 30) 86370s ter the djustent the pendulu's length nt (4 3600) 86400s Tke rti T T L g L L L g 86400 0.9930 L 0.9937 86370 86400 86370 4 L L 0.9937 0.9930 7 0 0

4.

5. 3

6. 4