LOCAL INVARIANCE OF FREE TOPOLOGICAL GROUPS

Similar documents
VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES

Free products of topological groups

APPLICATIONS OF THE STONE-CECH COMPACTIFICATION TO FREE TOPOLOGICAL GROUPS

Math General Topology Fall 2012 Homework 8 Solutions

Compactifications of Discrete Spaces

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

On z -ideals in C(X) F. A z a r p a n a h, O. A. S. K a r a m z a d e h and A. R e z a i A l i a b a d (Ahvaz)

Stone-Čech compactification of Tychonoff spaces

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

MATRIX LIE GROUPS AND LIE GROUPS

3. Prove or disprove: If a space X is second countable, then every open covering of X contains a countable subcollection covering X.

Spring -07 TOPOLOGY III. Conventions

THE NON-URYSOHN NUMBER OF A TOPOLOGICAL SPACE

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

8. Distributive Lattices. Every dog must have his day.

Topological groups with dense compactly generated subgroups

On the Baum-Connes conjecture for Gromov monster groups

Homotopy and homology groups of the n-dimensional Hawaiian earring

FINITE BOREL MEASURES ON SPACES OF CARDINALITY LESS THAN c

ON CHARACTERISTIC 0 AND WEAKLY ALMOST PERIODIC FLOWS. Hyungsoo Song

Khukhro, E. I. and Shumyatsky, P. MIMS EPrint: Manchester Institute for Mathematical Sciences School of Mathematics

Maximilian GANSTER. appeared in: Soochow J. Math. 15 (1) (1989),

Dieudonné completion and b f -group actions

Chapter 2 Linear Transformations

UNIVERSAL PROPERTIES OF GROUP ACTIONS ON LOCALLY COMPACT SPACES

3 Hausdorff and Connected Spaces

On an algebraic version of Tamano s theorem

COUNTABLY S-CLOSED SPACES

Quasi-invariant measures for continuous group actions

4 Countability axioms

PROPERTIES OF 5-CLOSED SPACES

ISOMORPHISM OF MODULAR GROUP ALGEBRAS OF ABELIAN GROUPS WITH SEMI-COMPLETE p-primary COMPONENTS

A Crash Course in Topological Groups

Then A n W n, A n is compact and W n is open. (We take W 0 =(

CERTAIN WEAKLY GENERATED NONCOMPACT, PSEUDO-COMPACT TOPOLOGIES ON TYCHONOFF CUBES. Leonard R. Rubin University of Oklahoma, USA

ADJUNCTION SPACES AND THE HEREDITARY PROPERTY

Notes about Filters. Samuel Mimram. December 6, 2012

MORE ABOUT SPACES WITH A SMALL DIAGONAL

GENERATING LARGE INDECOMPOSABLE CONTINUA

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

Closed Locally Path-Connected Subspaces of Finite-Dimensional Groups Are Locally Compact

CHAPTER 7. Connectedness

Lecture 4: Stabilization

MA651 Topology. Lecture 9. Compactness 2.

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

SUBALGEBRAS AND HOMOMORPHIC IMAGES OF THE RIEGER-NISHIMURA LATTICE

The topology of path component spaces

INVERSE LIMITS AND PROFINITE GROUPS

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes.

FIXED POINTS AND MULTIPLICATIVE LEFT INVARIANT MEANS

On a Question of Maarten Maurice

Prime Properties of the Smallest Ideal of β N

Czechoslovak Mathematical Journal

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

SENSITIVITY AND REGIONALLY PROXIMAL RELATION IN MINIMAL SYSTEMS

arxiv:math/ v1 [math.gn] 28 Mar 2007

TOPOLOGY TAKE-HOME CLAY SHONKWILER

ON ALMOST COUNTABLY COMPACT SPACES. Yankui Song and Hongying Zhao. 1. Introduction

On Linear and Residual Properties of Graph Products

Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 21, Tree Topology. A. R. Aliabad

ON SPACES IN WHICH COMPACT-LIKE SETS ARE CLOSED, AND RELATED SPACES

with the topology generated by all boxes that are determined by countably many coordinates. Then G is a topological group,

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

Centralizers of Finite Subgroups in Simple Locally Finite Groups

Some algebraic properties of. compact topological groups

Orthogonal Pure States in Operator Theory

NON-EXISTENCE OF UNIVERSAL SPACES FOR SOME STRATIFIABLE SPACES

Topological K-theory, Lecture 2

Houston Journal of Mathematics. c 1999 University of Houston Volume 25, No. 4, 1999

COMPACT SPACES WITH HEREDITARILY NORMAL SQUARES

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

7. Homotopy and the Fundamental Group

CW-complexes. Stephen A. Mitchell. November 1997

Locally Compact Topologically Nil and Monocompact PI-rings

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Math 541 Fall 2008 Connectivity Transition from Math 453/503 to Math 541 Ross E. Staffeldt-August 2008

CLOSED MAPS AND THE CHARACTER OF SPACES

DENSE C-EMBEDDED SUBSPACES OF PRODUCTS

CHODOUNSKY, DAVID, M.A. Relative Topological Properties. (2006) Directed by Dr. Jerry Vaughan. 48pp.

arxiv: v2 [math.gn] 21 Jan 2019

SOLUTIONS TO THE FINAL EXAM

INEQUIVALENT CANTOR SETS IN R 3 WHOSE COMPLEMENTS HAVE THE SAME FUNDAMENTAL GROUP

Large Sets in Boolean and Non-Boolean Groups and Topology

Topological properties

Part III. 10 Topological Space Basics. Topological Spaces

SOME BANACH SPACE GEOMETRY

Slightly γ-continuous Functions. Key words: clopen, γ-open, γ-continuity, slightly continuity, slightly γ-continuity. Contents

LOCALLY ^-CLOSED SPACES AND RIM /»-CLOSED SPACES

C-Normal Topological Property

ON RIGIDITY OF ALGEBRAIC DYNAMICAL SYSTEMS

FINITE IRREFLEXIVE HOMOMORPHISM-HOMOGENEOUS BINARY RELATIONAL SYSTEMS 1

Measures and Measure Spaces

Course 212: Academic Year Section 1: Metric Spaces

On the Asphericity of One-Point Unions of Cones

We have the following immediate corollary. 1

Jónsson posets and unary Jónsson algebras

Transcription:

Proceedings of the Edinburgh Mathematical Society (1986) 29, 1-5 LOCAL INVARIANCE OF FREE TOPOLOGICAL GROUPS by M. S. KHAN, SIDNEY A. MORRIS and PETER NICKOLAS (Received 23rd July 1984) 1. Introduction In 1948, M. I. Graev [2] proved that the free topological group on a completely regular Hausdorff space is Hausdorff, by showing that the free group admits a certain locally invariant Hausdorff group topology. It is natural to ask if Graev's locally invariant topology is the free topological group topology. If X has the discrete topology, the answer is clearly in the affirmative. In 1973, Morris-Thompson [6] showed that if X is not totally disconnected then the answer is negative. Nickolas [7] showed that this is also the case if X has any (non-trivial) convergent sequence (for example, if X is any non-discrete metric space). Recently, Fay and Smith Thomas handled the case when X has a completely regular Hausdorff quotient space which has an infinite compact subspace (or more particularly a non-trivial convergent sequence). (Fay-Smith Thomas observe that their class of spaces includes some but not all those dealt with by Morris-Thompson.) For convenience, we say a completely regular Hausdorff space is tolerable if it has a countably infinite family of closed subsets A n,n = l,2,..., such that (J"=i>l n is not closed. We shall see that all the spaces above, considered by Morris-Thompson, Nickolas and Fay-Smith Thomas are tolerable. We prove that the free topological group on any tolerable space is not locally invariant. Fay-Smith Thomas mention the space X defined below as one for which the question of local invariance is undecided: Let M be the discrete space of natural numbers, and X the subspace of the Stone-Cech compactification fin of N defined by A" = Nu{p}, for any pefln\n. Clearly X is a tolerable space, and so the free topological group is not locally invariant. We remind the reader that the Graev free topological group on a completely regular Hausdorff (pointed) space X with basepoint e is a topological group F(X) which, algebraically, is a free group with X\{e} as a free basis, and is such that any continuous map from X to a topological group, sending e to the identity, extends uniquely to a continuous homomorphism on F(X). The basepoint e becomes the identity of F(X), and the generating copy of X has the topology of the original space. This construction is independent, up to isomorphism, of the choice of basepoint [2]. A topological group is said to be locally invariant if it has a basis at the identity of sets invariant under all inner automorphisms. We need the following theorem. Theorem A [2, 3]. Let Y be any compact Hausdrqff space. A subset C of F(Y) is closed if and only if CnF n (Y) is compact, for all n, where F n (Y) is the set of all words in F( Y) of reduced length at most n. 1

2 M. S. KHAN, S. A. MORRIS AND P. NICKOLAS 2. The Theorem Theorem. If X is any tolerable space, then F(X) is not locally invariant. Proof. Let A n,n=l,2,..., be a family of closed subsets of X such that A = (J = t A n is not closed. Without loss of generality let the basepoint e be in A\A. For each n, let x n ea\a n (so x n =/=e). For each n, let B n be the subset of F(X) given by B n = x~ n A n x" n, and put B = \J =1 B n. We shall prove that B is closed in F(X), but is not closed in any locally invariant topology on the underlying group of F(X). Let cj) be the canonical embedding of X in its Stone-Cech compactification f$x. Then <j> extends to a continuous homomorphism <S>:F(X)-*F(f}X). Put and Clearly 00 c= U c n. n = 1 = U *" x (c n ) = U- n=l U n=l as A n is a closed subspace of X and $ is an embedding of X into flx. So O" 1 (C) = B. But since the length of each word in C m, for m>n, is 2m +1 >n, CnF n (f}x) = (U"=iC ; ) n F n (PX). So, since (J" =1 C,- is compact, CnF n (/ix) is compact for each «, and therefore by Theorem A, C is closed in F(f}X). Hence B = O~ 1 (C) is closed in F(X). Now let T be any locally invariant group topology which induces the given topology on X. As eea\a there exists a net a a in A such that a a -*e. Put h a = x n ~"a e[ x^, where n = min{m:a a e^m}. Clearly b x -^e in the locally invariant topology x. As ft a eb but e$b, B is not closed in x. This completes the proof. Remark 1. The above theorem was announced without proof in [5]. It is interesting to note that the condition of tolerability is precisely that for which it is known that the Graev and Swierczkowski topologies [5] on the free group are distinct.

3. Applications LOCAL INVARIANCE OF FREE TOPOLOGICAL GROUPS 3 We call a space intolerable if it is completely regular Hausdorff and is not tolerable. Of course all discrete spaces are intolerable. In Section 4 we give some examples of nondiscrete intolerable spaces. Proposition 1. // X is an intolerable space, then every countable subspace Y of X is closed in X and its induced topology is discrete. Proof. As Y is the countable union of its singleton subsets, each of which is closed in X, Y is closed in X. Similarly, if y is any point of Y then the countable set Y\{y] is closed in X. Hence {y} is open in Y, and so Y has the discrete topology. The proof of the next proposition is trivial, and is therefore omitted. Proposition 2. Every completely regular Hausdorff quotient space of an intolerable space is intolerable. Also, every subspace of an intolerable space is intolerable. Corollary. Let X be a completely regular Hausdorff space such that X {or a completely regular Hausdorff quotient space of X) has any of the following properties: (i) X is a non-discrete metric space, (ii) X has a non-trivial convergent sequence, (iii) X has an infinite compact subspace, (iv) X has a non-discrete subspace which is a k-space, (v) X is not totally disconnected. Then F(X) is not locally invariant. Proof. Clearly (i)=>(ii)=>(iii)=>(iv)=>(iii). By Proposition 1, if X satisfies (iii), then X is tolerable, since otherwise the infinite compact Hausdorff subspace would necessarily contain a countably infinite closed discrete subspace, contradicting the compactness of the first subspace. If X is not totally disconnected, then by the Lemma of [6], X is tolerable. So if X has any of the properties (i),..., (v), then X is tolerable. Hence, by Proposition 2, if a completely regular Hausdorff space has a completely regular Hausdorff quotient space with any of the properties (i),...,(v), then X is tolerable. Applying our Theorem of Section 2 then completes the proof. Remark 2. The above Corollary contains the results of [1], [6] and [7]. Remark 3. We do not know whether the condition of being a tolerable space is necessary for F(X) to be locally invariant. With this in mind, we end this section with a proposition which complements Proposition 2 and may be useful in later work. Proposition 3. Let X and Y be completely regular Hausdorff spaces, with Y a quotient space of X. If F(X) is locally invariant, then F( Y) is locally invariant. Proof. If <p:x-+y is a quotient map, then it is easily shown (and well known) that the canonical extension of <p to a continuous homomorphism O of F(X) onto F(Y) is a quotient map. Hence if F(X) is locally invariant so too is F( Y).

4. Examples M. S. KHAN, S. A. MORRIS AND P. NICKOLAS In [1], Fay-Smith Thomas record an example, mentioned in Section 1, for which the problem of local invariance is not settled. The following Remark covers their example and more. Remark 4. Let X be any countably infinite completely regular Hausdorff space, and PX its Stone-Cech compactification. If Icycfix, then F(Y) is not locally invariant. This result follows from our Theorem, since X is not closed in Y which, by Proposition 1, implies Y is a tolerable space. So far our only examples of intolerable spaces are the discrete spaces. We now introduce a family of non-discrete intolerable spaces, but first we observe that even any infinite product of discrete spaces (with at least 2 points) is tolerable. Indeed, any infinite product of non-trivial completely regular Hausdorff spaces is tolerable, since it has a subspace homeomorphic to the compact space formed by taking a countably infinite product of 2-point discrete spaces. Example. Let X be any set of cardinality m>k 0. Further, let e be any point of X and n any cardinal number satisfying K 0^n<m. We define a topology on X by stating that the closed sets are all the subsets containing e, and all the subsets of cardinality ^ n. It is easily seen that with this topology, X is a non-discrete Hausdorff normal (and hence completely regular) topological space. Further, X is intolerable. So this family of examples is not covered by our Theorem, and we have been unable to establish whether or not each F(X) is locally invariant. Further intolerable spaces can be obtained by observing that all finite products, all box products, and all disjoint unions of intolerable spaces are intolerable. Remark 5. In fact our proof of the Theorem in Section 2 yields more than we have said to date. Let x s be the induced topology (from F{flX)) on the free group <&(F(X)). It is shown in Nummela [8] that T S is the free topology (that is, <S> is an isomorphism of F(X) onto <!>(F(X)) if and only if X is pseudocompact. So if X is any nonpseudocompact tolerable space then x s is not the free topology, and the proof of the theorem shows that t s is not locally invariant. Remark 6. Finally we point out that every intolerable space is pseudonormal. (Recall that a topological space X is said to be pseudonormal if given any two disjoint closed subsets A and B such that one of them is countable, there exist disjoint open sets U and V such that A<=, U and Bg v. See [4].) To see this let X be intolerable and A and B as above. Without loss of generality, assume A is countable. As X is completely regular and Hausdorff, for each as A there exists a continuous function f a :X->[0,1] such that/ a (a)=0 and/ a (B) = l. Therefore, for each as A, there exist disjoint open sets U a and V a such that aeu a and B^V a. Then, since X is intolerable U = {J aea U a and V=f > \ aea V a are disjoint open sets such that A<=U and B E K which completes the proof.

LOCAL INVARIANCE OF FREE TOPOLOGICAL GROUPS 5 REFERENCES 1. TEMPLE H. FAY and BARBARA V. SMITH THOMAS, Free topological groups are almost never locally Invariant, Math. Colloq. Univ. Capetown 13 (1984), 1-8. 2. M. I. GRAEV, Free topological groups, Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 279-324. English trans.: Amer. Math. Soc. Transl. 35 (1951); reprint Amer. Math. Soc. Transl. (1) 8 (1962), 305-364. 3. JOHN MACK, SIDNEY A. MORRIS and EDWARD T. ORDMAN, Free topological groups and the projective dimension of a locally compact abelian group, Proc. Amer. Math. Soc. 40 (1973), 303-308. 4. ARNOLD W. MILLER On box products, Topology Applic. 14 (1982), 313-317. 5. SIDNEY A. MORRIS and PETER NICKOLAS, Locally Invariant topologies on free groups, Pacific J. Math. 103 (1982), 523-537. 6. SIDNEY A. MORRIS and H. B. THOMPSON, Invariant metrics on free topological groups, Bull. Austral. Math. Soc. 9 (1973), 83-88. 7. PETER NICKOLAS, Free topological groups and free products of topological groups (Ph.D. thesis, University of New South Wales, Australia, 1976). 8. E. NUMMELA, Uniform free topological groups and Samuel compactifications, Topology Applic. 13 (1982), 77-83. DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS KING ABDUL AZIZ UNIVERSITY LA TROBE UNIVERSITY P.O. Box 9028, JEDDAH-21413, BUNDOORA 3083 SAUDI ARABIA AUSTRALIA DEPARTMENT OF COMPUTING SCIENCE UNIVERSITY OF WOLLONGONG WOLLONGONG, 2500 AUSTRALIA