Elliptic Cohomology. Prospects in Mathematics Durham, December Sarah Whitehouse. University of Sheffield

Similar documents
ELLIPTIC COHOMOLOGY: A HISTORICAL OVERVIEW

COMPLEX COBORDISM THEORY FOR NUMBER THEORISTS. Douglas C. Ravenel Department of Mathematics University of Washington Seattle, WA 98195

Topological Field Theories in Homotopy Theory I

Realizing Families of Landweber Exact Theories

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin

Complex Bordism and Cobordism Applications

COBORDISM AND FORMAL POWER SERIES

p-divisible Groups and the Chromatic Filtration

The Dirac-Ramond operator and vertex algebras

NOTES FOR NU PRE-TALBOT SEMINAR 4/18/13

Outline of the Seminar Topics on elliptic curves Saarbrücken,

arxiv:math/ v1 [math.at] 5 Oct 1999

Chern numbers and Hilbert Modular Varieties

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Truncated Brown-Peterson spectra

Topics in Geometry: Mirror Symmetry

Exotic spheres and topological modular forms. Mark Behrens (MIT) (joint with Mike Hill, Mike Hopkins, and Mark Mahowald)

Stringy Topology in Morelia Week 2 Titles and Abstracts

HECKE OPERATORS AS OPERATIONS IN ELLIPTIC COHOMOLOGY Andrew Baker Department of Mathematics, Manchester University, Manchester M13 9PL

Bordism and the Pontryagin-Thom Theorem

Math 213br HW 3 solutions

Cubic curves: a short survey

Exotic spheres. Overview and lecture-by-lecture summary. Martin Palmer / 22 July 2017

RTG Mini-Course Perspectives in Geometry Series

SMSTC Geometry and Topology

Vanishing theorems and holomorphic forms

Background and history. Classifying exotic spheres. A historical introduction to the Kervaire invariant problem. ESHT boot camp.

Remarks on Fully Extended 3-Dimensional Topological Field Theories

X G X by the rule x x g

TOPOLOGICAL MODULAR FORMS - I. KU Ell(C/R) E n

Representation Theory in Intermediate Characteristic

The Steenrod algebra

Homotopy and geometric perspectives on string topology

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 37

TOWARDS A SPLITTING OF THE K(2)-LOCAL STRING BORDISM SPECTRUM

Donaldson Invariants and Moduli of Yang-Mills Instantons

The Affine Grassmannian

Symmetries of K3 sigma models

JUVITOP OCTOBER 22, 2016: THE HOPKINS-MILLER THEOREM

Compactifying string topology

An introduction to cobordism

A Primer on Homological Algebra

Nonabelian Poincare Duality (Lecture 8)

Categorifying quantum knot invariants

7.3 Singular Homology Groups

Nilpotence and Stable Homotopy Theory II

Spheres John Milnor Institute for Mathematical Sciences Stony Brook University (

ABEL S THEOREM BEN DRIBUS

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS

Classification of (n 1)-connected 2n-dimensional manifolds and the discovery of exotic spheres

An invitation to log geometry p.1

String Topology of Classifying Spaces

Spectra and the Stable Homotopy Category

110:615 algebraic topology I

University of Rochester Topology Seminar. Doug Ravenel

Instantons and Donaldson invariants

Complex Cobordism and Formal Group Laws

On the non-existence of elements of Kervaire invariant one

Lecture 19: Equivariant cohomology I

ON COSTELLO S CONSTRUCTION OF THE WITTEN GENUS: L SPACES AND DG-MANIFOLDS

Part II. Riemann Surfaces. Year

Possible Advanced Topics Course

Categorification and Topology.

Introduction (Lecture 1)

Publications of Douglas C. Ravenel

Field theories and algebraic topology

Lecture 1: Introduction

Morse Theory and Applications to Equivariant Topology

On 2-Representations and 2-Vector Bundles

C n.,..., z i 1., z i+1., w i+1,..., wn. =,..., w i 1. : : w i+1. :... : w j 1 1.,..., w j 1. z 0 0} = {[1 : w] w C} S 1 { },

T -equivariant tensor rank varieties and their K-theory classes

Handlebody Decomposition of a Manifold

HOMEWORK FOR SPRING 2014 ALGEBRAIC TOPOLOGY

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p.

p,q H (X), H (Y ) ), where the index p has the same meaning as the

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

0. Introduction 1 0. INTRODUCTION

An Introduction to Spectral Sequences

K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants

Abelian Varieties and Complex Tori: A Tale of Correspondence

Categorification and (virtual) knots

Algebraic Curves and Riemann Surfaces

Chapter 3: Homology Groups Topics in Computational Topology: An Algorithmic View

Knot Homology from Refined Chern-Simons Theory

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

The 3-primary Arf-Kervaire invariant problem University of Virginia

Cohomology jump loci of quasi-projective varieties

CHARACTERISTIC CLASSES

30 Surfaces and nondegenerate symmetric bilinear forms

Braid groups, their applications and connections

EQUIVARIANT ELLIPTIC COHOMOLOGY AND RIGIDITY

Formal groups laws and genera*

MODULI SPACES AND DEFORMATION THEORY, CLASS 1. Contents 1. Preliminaries 1 2. Motivation for moduli spaces Deeper into that example 4

15 Elliptic curves and Fermat s last theorem

INTRODUCTION TO THE HODGE CONJECTURE

Mike Hill University of Virginia Mike Hopkins Harvard University Doug Ravenel University of Rochester

THE STEENROD ALGEBRA. The goal of these notes is to show how to use the Steenrod algebra and the Serre spectral sequence to calculate things.

Spherical varieties and arc spaces

THE MODULI SPACE OF RATIONAL FUNCTIONS OF DEGREE d

FAKE PROJECTIVE SPACES AND FAKE TORI

Transcription:

Elliptic Cohomology Prospects in Mathematics Durham, December 2006 Sarah Whitehouse University of Sheffield

Plan 1 Overview 2 Invariants 3 From genera to cohomology theories 4 Elliptic curves 5 Elliptic cohomology 6 Properties of elliptic cohomology 7 What is elliptic cohomology really?

What is elliptic cohomology? Overview It s a cohomology theory. For each topological space X, we have a graded ring Ell (X ), the elliptic cohomology of X. There are various different versions. In some sense there s one version EllC ( ) for each elliptic curve C, hence the name. This provides a strong connection to number theory. It s also related to theoretical physics - string theory and conformal field theory. The current definition is via homotopy theory. It s a very active research area, especially the search for a more geometric definition.

A very brief history 1980 s: Witten: invariants of manifolds related to string theory, physical proof of a mysterious connection with elliptic curves 1980 s, 1990 s: Ochanine, Landweber, Stong, Ravenel: elliptic genus and first versions of elliptic cohomology 1980 s, 1990 s: Segal: elliptic objects - relation with conformal field theory Early 2000 s: Ando, Hopkins, Strickland: good homotopy theory definition of all elliptic theories Early 2000 s: Hopkins, Lurie, Miller: homotopy theory construction of the universal elliptic cohomology, tmf ( ) Now: ongoing search for a geometric or analytical or physical description

Invariants In algebraic topology we assign invariants to topological spaces X. topological spaces algebraic gadgets of some kind Examples The fundamental group X π 1 (X ). The Euler characteristic X χ(x ) Z.

Invariants Examples Ordinary homology and cohomology X H (X ) or H (X ). H (X ) is a graded abelian group and H (X ) is a graded ring. Complex K-theory X K (X ). Cobordism

Cohomology theories Topologists favourite invariants are cohomology theories. A cohomology theory E ( ) assigns to each topological space X a Z-graded abelian group E (X ). This means that we have an abelian group E n (X ), for each integer n. This is done in such a way that E ( ) shares many of the basic properties of ordinary cohomology. In particular, standard techniques for calculation are available. Each example provides both a homology theory and a cohomology theory, dual to each other. Interesting examples have a multiplication: E (X ) is a graded ring.

Genera An elliptic cohomology theory will be a cohomology theory somehow associated to an elliptic curve. To explain how this association takes place, we will need to discuss genera and their associated log series. A genus is a special sort of invariant. This is defined for manifolds. An n-dimensional manifold is a compact space M which is locally homeomorphic to R n, with some additional structure allowing differentiation. A manifold with boundary is like a manifold except that some points have neighbourhoods that look like R n 1 [0, ) rather than R n.

Genera Definition A genus associates to each closed oriented manifold M an element Φ(M) of a ring R in such a way that: Φ(M 1 M 2 ) = Φ(M 1 ) + Φ(M 2 ), where denotes disjoint union, Φ(M 1 M 2 ) = Φ(M 1 )Φ(M 2 ), Φ(M 1 ) = Φ(M 2 ) if M 1 and M 2 are cobordant. So now I need to explain what cobordant means.

Cobordism Let M 1, M 2 be closed oriented manifolds of dimension n. Definition M 1 and M 2 are cobordant if there is an oriented manifold W of dimension n + 1 such that W = M 1 M 2. This is an equivalence relation and we write MSO n for the set of equivalence classes. Then MSO (that is the collection of MSO n for n 0) forms a graded ring, where the operations come from disjoint union and Cartesian product: [M 1 ] + [M 2 ] = [M 1 M 2 ], [M 1 ][M 2 ] = [M 1 M 2 ].

Cobordism Theorem (Thom) MSO Z[ 1 2 ] = Z[ 1 2 ][x 1, x 2, x 3,...], a polynomial ring on infinitely many variables, with x i in degree 4i. The generators can be taken to be the classes of the even dimensional complex projective spaces [CP 2i ]. We can also generalise the above construction, to define a homology theory.

Cobordism as a homology theory Given a space X, we consider maps f : M X, imposing the equivalence relation : f 1 : M 1 X and f 2 : M 2 X are equivalent if there is F : W X such that the restriction to the boundary of W gives f 1 f 2 : M 1 M 2 X. Definition The set of equivalence classes is denoted MSO (X ). Then X MSO (X ) is a homology theory. The first case we considered corresponds to taking X to be a point.

Logs Now we can reformulate the definition of a genus as a ring map φ from MSO to a graded ring R. We simplify matters by assuming 1 2 R and consider φ : MSO Z[ 1 2 ] R. Then, by Thom s theorem, a genus is completely determined by what it does on the generators x i = [CP 2i ]. This is recorded in the associated log series: log φ (x) = i 0 φ([cp 2i ]) 2i + 1 x 2i+1 in R Q[[x]]. And, in fact, providing such a log series is equivalent to providing a genus.

From genera to cohomology theories Given a genus φ : MSO R, this makes R into a module over MSO. We can attempt to use this to make a new homology theory, a kind of quotient theory of cobordism, by trying X MSO (X ) MSO R. This algebraic trick quite often works, and a theorem of Landweber tells us exactly when it does.

The story so far I nice cohomology nice genera theories i.e. ring maps X E (X ) MSO R We need to explain how to produce a genus, and so a cohomology theory, from an elliptic curve.

Elliptic curves Definition An elliptic curve is the complex plane C modulo a lattice Λ. Topologically, this gives a torus. But C/Λ also has the structure of an abelian group, coming from addition in C. It also has the structure of a compact Riemann surface - i.e. a compact 1-dimensional complex manifold. There is a standard way to associate to the lattice a cubic equation of the form y 2 = 4x 3 g 2 x g 3, where g 2 = g 2 (Λ), g 3 = g 3 (Λ) C.

Elliptic cohomology Let C be an elliptic curve. Write its equation as y 2 = 4(x e 1 )(x e 2 )(x e 3 ). Let δ = 3 2 e 1, ɛ = (e 1 e 2 )(e 1 e 3 ). Then, under a standard change of variables, its equation becomes the Jacobi quartic: v 2 = 1 2δu 2 + ɛu 4. Definition For an elliptic curve C, the associated log series is given by the elliptic integral: log φc (x) = x 0 1 dt. (1 2δt 2 + ɛt 4 ) 1/2

The log series corresponds to a genus Elliptic cohomology φ C : MSO Z[1/2][δ, ɛ]. If the discriminant = ɛ 2 (δ 2 ɛ) is non-zero, then this satisfies the conditions necessary to produce a cohomology theory via Landweber s theorem, giving Ell C ( ).

The story so far II nice cohomology nice genus theory MSO R = Z[1/2][δ, ɛ] EllC ( ) associated log series defined by elliptic integral elliptic curve C

Modular forms The value of elliptic cohomology on a point is closely related to modular forms. We can think of a lattice Λ in C as generated by 1 and z for some z in the upper half plane (up to isomorphism of elliptic curves). If we change z by z az+b, where a, b, c and d are integers cz+d ( ) a b and the determinant of the matrix is 1, we get an c d isomorphic elliptic curve. The group of such matrices is SL(2, Z).

Modular forms Definition A modular function of weight n is an analytic function f : H C on the upper half H of the complex plane such that f ((az + b)/(cz + d)) = (cz + d) n f (z) ( ) a b for all matrices in SL(2, Z). c d A modular function is a modular form if it is well-behaved as Im(z). There are only non-zero modular forms for weights which are natural numbers.

Modular forms There is a graded ring of modular forms: if you add two modular forms of weight n you get another one of weight n, and if you multiply two modular forms of weights m and n, you get one of weight m + n. There are lots of variants, corresponding to restricting to subgroups of finite index in SL(2, Z). One variant turns out to give the graded ring Z[1/2][δ, ɛ], with δ in degree 4 and ɛ in degree 8. It is not a coincidence that this is the same ring that showed up earlier: it s not hard to see that the elliptic genus we defined earlier takes values in this ring of modular forms.

A universal elliptic cohomology? To an elliptic curve we have associated a cohomology theory. elliptic curve C Ell C( ) Then Ell C ( ) is (an) elliptic cohomology. So there are many elliptic cohomologies, not just one. We would like to say: take the universal elliptic curve and then the associated cohomology theory is the (universal) elliptic cohomology. Unfortunately, the universal elliptic curve doesn t exist. Nonetheless, it is possible to define a kind of universal elliptic cohomology, called tmf ( ), short for topological modular forms. It s universal in the sense that it comes with a good map to any elliptic cohomology theory.

Its place in a hierarchy The complicated information available to all cohomology theories can be organised using the chromatic filtration. Here are the bottom levels of the filtration: Level Cohomology theory Geometry 0 H ( ; Q) points 1 K ( ) vector bundles 2 Elliptic theories??? So elliptic theories live at level 2 in this (infinite) hierarchy, representing the next step beyond ordinary cohomology and K-theory.

Conjectural descriptions Finding a good description of elliptic cohomology is a hot topic of current research. Answer 1: [Baas-Dundas-Rognes] Elliptic cohomology is a categorification of K-theory Elliptic cohomology should be built out of things called 2-vector bundles, in the same way that K-theory is built out of vector bundles. Answer 2: [Segal; Stolz-Teichner] Building on ideas of Segal, relating equivariant versions of elliptic cohomology to loop groups, Stolz and Teichner propose that tmf is closely related to supersymmetric conformal field theories.

Advertising We expect to have at least 5 funded Ph.D. places in Pure Mathematics in Sheffield next academic year. We have strong research groups in algebraic topology, commutative algebra, differential geometry, number theory and ring theory. Please look at our webpages at http://www.shef.ac.uk/puremaths/prospectivepg