Transition Metal Chemistry

Similar documents
Transition Metal Chemistry

Transition Metal Chemistry

Chapter 25 Transition Metals and Coordination Compounds Part 1

Chapter 21: Transition Metals and Coordination Chemistry

Ch. 23: Transition metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Coordination chemistry and organometallics

Chemistry 201: General Chemistry II - Lecture

Transition Metals and Complex Ion Chemistry

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

CHAPTER - 9 ORDINATION COMPOUNDS

Transition Metals and Coordination Chemistry

CHEM N-3 November Transition metals are often found in coordination complexes such as [NiCl 4 ] 2. What is a complex?

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers

Downloaded from

Q.1 Predict what will happen when SiCl 4 is added to water.

Transition Metal Chemistry and Coordination Compounds

Q.1 Predict what will happen when SiCl 4 is added to water.

Transition Metal Elements and Their Coordination Compounds

Transition Metal Complexes

Coordination compounds

Q.1 Predict what will happen when SiCl 4 is added to water.

Chapter 19: Phenomena

Chapter 23. Transition Metals and Coordination Chemistry ( 전이금속과배위화학 ) Lecture Presentation

Chapter 19: Phenomena

Complexes. Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds.

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls

Chapter 23 Transition Metals and Coordination Chemistry

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds

Chap 24. Transition Metals and Coordination Compounds. Hsu Fu-Yin

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

CO-ORDINATION COMPOUNDS

Chemistry of Transition Metals. Part 1. General Considerations

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

Orbitals and energetics

15 THE TRANSITION METALS

UNIT IX COORDINATION COMPOUNDS ( 3 : MARKS)

Inorganic Pharmaceutical Chemistry. Coordination compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

Chapter 23 Transition Metals and Coordination Chemistry

Chem 1102 Semester 2, 2011!

Coordination Compounds. Compounds containing Transition Metals

Metallic best heat conductor of heat and e the second. Ionic compounds often contain more than one oxidation state

RDCH 702 Lecture 4: Orbitals and energetics

The d -Block Elements

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation #

Transition Metal Chemistry and Coordination Compounds

Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

18-Jul-12 Chemsheets A

UNIT 9 Topic: Coordination Compounds

Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

CHEM N-2 November Explain the following terms or concepts. Lewis base. Marks 1

Periodicity HL (answers) IB CHEMISTRY HL

CHEMISTRY - CLUTCH CH.23 - TRANSITION METALS AND COORDINATION COMPOUNDS

Chapter 24. Chemistry of Coordination Compounds

The d-block elements. Transition metal chemistry is d-orbitals/electrons

5.3.1 Transition Elements

Chemical Thermodynamics

Coordination Number Six

The d -Block Elements & Coordination Chemistry

Coordination compounds - Isomerism

ion can co-ordinate either through nitrogen or through oxygen atom to the central metal atom/ion. If the donor atom is N, it is written as NO 2

The Transition Elements and Coordination Compounds

Topic 5 Transition Elements Revision Notes

Bonding in Transition Metal Compounds Oxidation States and Bonding

CHEM J-2 June 2014

Chemistry STD-XII-Science-Top concepts and Notes on d and f block elements. The d and f-block Elements Top 15 Concepts

Some chemistry of the Periodic Table. Electronic configuration and oxidation states of the transition metals

TM compounds. TM magnetism

Chapter 23. Transition Metals and Coordination Chemistry

Topic 5.5 REACTIONS OF INORGANIC COMPOUNDS IN SOLUTION. Lewis Acids and Bases Hydrated Metal Cations Reactions of Complex Ions

1. [7 points] Which element is oxidized in the reaction below? + O 2 + H 2 O

QUESTIONSHEETS INORGANIC CHEMISTRY REACTIONS OF PERIOD 3 ELEMENTS WITH WATER REACTIONS OF PERIOD 3 ELEMENTS WITH OXYGEN

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Coordination Compounds

Chemistry of Coordination Compounds - Chapter 19

NAME: SECOND EXAMINATION

Drawing Lewis Structures

1. KCl.MgCl 2 .6H 2. Oisa. a) Mixed salt. c) Basic salt d) Complex salt

Coordination Inorganic Chemistry

d- Block Elements

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

Chapter 10 Practice Problems

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Introduction to Inorganic Chemistry

HL Topics 3 and 13 : Periodicity (2)

Inorganic chemistry 3-stage Lec. 2. Dr- leaqaa

1. KCl.MgCl 2 .6H 2. Oisa. a) Mixed salt. c) Basic salt d) Complex salt. Ans: b - Double salt

Section 6 Questions from Shriver and Atkins

Chemistry 1B. Fall Lectures Coordination Chemistry

Frequency of scores on exam 2. Grade = n(right)/28 x 100

TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

For more important question's visit :

Copper Chemistry. Cu : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10

Transcription:

APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic Table Elements are divided into four categories Main-group elements (S-Block) Transition metals 1. Main-group elements 2. Transition metals 3. Lanthanides 4. Actinides Main-group elements (P-Block) Lanthanides Actinides CHEM261HC/SS1/02 1

Transition metals vs. Main-group elements Transition metals Main group elements Main group metals malleable and ductile conduct heat and electricity form positive ions Cisplatin Transition metals more electronegative than the main group metals more likely to form covalent compounds easily form complexes form stable compounds with neutral molecules There is some controversy about the classification of the elements i.e. Zinc (Zn), Cadmium (Cd) and Mercury (Hg) e configuration [ ]ns 2 n 1d 10 IUPAC A transition metal is "an element whose atom has an incomplete d subshell, or which can give rise to cations with an incomplete d sub shell. CHEM261HC/SS1/03 Electron configuration of Transition-metal ions The relationship between the electron configurations of transition metal elements and their ions is complex. Example Consider the chemistry of cobalt which forms complexes that contain either Co 2+ or Co 3+ ions. Co has 27 electrons Co: [Ar] 4s 2 3d 7 [Ar] has 18 electrons Co 2+ : [Ar] 3d 7 Co 3+ : [Ar] 3d 6 In general, electrons are removed from the valence shell s orbitals before they are removed from valence d orbitals when transition metals are ionized. CHEM261HC/SS1/04 2

How do we determine the electronic configuration of the central metal ion in any complex? Try to recognise all the entities making up the complex Needknowingwhetherthe ligandsare neutralor anionic Then youcandetermine the oxidation state of the metal ion. A simple procedure exists for the M(II) case same as M(+2) or M 2+ 22 23 24 25 26 27 28 29 Ti V Cr Mn Fe Co Ni Cu Cross off the first 2 gives you total No. of valence electrons left 2 3 4 5 6 7 8 9 CHEM261HC/SS1/05 EXAMPLES Elements Configuration Oxidized elements Configuration Sc [Ar]4s 2 3d 1 Sc(III) [Ar] V [Ar]4s 2 3d 3 V(II) [Ar]3d 3 Cr [Ar]4s 1 3d 5 Cr(III) [Ar]3d 3 Fe [Ar]4s 2 3d 6 Fe(II) [Ar]3d 6 Ni [Ar]4s 2 3d 8 Ni(II) [Ar]3d 8 Cu [Ar]4s 1 3d 10 Cu(I) [Ar]3d 10 Zn [Ar]4s 2 3d 10 Zn(II) [Ar}3d 10 variety of oxidation states!! 3

Evaluating the oxidation state [CoCl(NO 2 )(NH 3 ) 4 ] + X + (- 2) + 0 = +1 X - 2 = +1 x = +3 Co 3+ Neutral zero charge Net charge on complex ion (+1) CHEM261HC/SS1/06 Oxidation states and their relative stabilities Why do these elements exhibit a variety of oxidation states? Because of the closeness of the 3d and 4s energy states Sc +3 Ti +1 +2 +3 +4 V +1 +2 +3 +4 +5 Cr +1 +2 +3 +4 +5 +6 Mn +1 +2 +3 +4 +5 +6 +7 Fe +1 +2 +3 +4 +5 +6 Co +1 +2 +3 +4 +5 Ni +1 +2 +3 +4 Cu +1 +2 +3 Zn +2 The most prevalent oxidation numbers are shown in green. CHEM261HC/SS1/07 4

An increase in the No. of oxidation states from Sc to Mn. All seven oxidation states are exhibited by Mn. There is a decrease in the No. of oxidation states from Mn to Zn. WHY? Sc +3 Ti +1 +2 +3 +4 Because the pairing V +1 of d-electrons +2 +3 occurs +4 +5after Mn (Hund's rule) which in turn decreases Cr +1 the+2 number +3 of +4 available +5 +6unpaired electrons and hence, the number Mn +1 of oxidation +2 +3 states. +4 +5 +6 +7 Fe +1 +2 +3 +4 +5 +6 The stability of higher Co +1 oxidation +2 states +3 +4 decreases +5 in moving from Sc to Zn. Ni +1 +2 +3 +4 Mn(VII) and Fe(VI) Cu are +1 powerful +2 +3oxidizing agents and the higher oxidation states of Zn Co, Ni and +2Zn are unknown. CHEM261HC/SS1/09 The relative stability of +2 state with respect to higher oxidation states increases in moving from left to right. On the other hand +3 state becomes less stable from left to right. Why? Sc +3 This is justifiable Ti since +1 it +2 will be +3 increasingly +4 difficult to remove the third electron from V the +1 d-orbital. +2 +3 +4 +5 Example Cr +1 +2 +3 +4 +5 +6 Mn +1 +2 +3 +4 +5 +6 +7 22 Fe 23 +1 24 +2 25 +3 +4 26 +5 27 +6 28 29 Ti Co +1 +2 +3 +4 +5 V Cr Mn Fe Co Ni +1 +2 +3 +4 Ni Cu Cu M =[Ar]4s +1 +2 2 3d x +3 Zn +2 M +2 =[Ar]3d x loss of the two s electrons M +3 =[Ar]3d x-1 more difficult CHEM261HC/SS1/10 5

Chromium Oxidized by HCl or H 2 SO 4 to form blue Cr 2+ ion Cr 2+ oxidized by O 2 in air to form green Cr 3+ Assignment 1 Write down balance equations that show the two reactions Cr also found in +6 state as in CrO 2 4 and Cr 2 2 O 7 are strong oxidizer Assignment 2 Use balanced equations to show that and Cr 2 O 2 7 are strong oxidizing agents CrO 4 2 Assignment 1 Solution Cr (S) + H 2 SO 4(aq) Cr 2 SO 4(aq) + H 2(g) 2 Cr (s) + 4 HCl (aq) 2 CrCl 2(aq) + 2H 2(g) 2CrCl 2(aq) + O 2(g) Cr 2 O 2 Cl 2(aq) + Cl 2(g) 6

Iron Fe exists in solution in +2 or +3 state Elemental Fe reacts with non-oxidizing acids to form Fe 2+, which oxidizes in air (O 2 ) to Fe 3+ Brown water running from a faucet is caused by insoluble Fe 2 O 3 Fe 3+ soluble in acidic solution, but forms a hydrated oxide as red-brown gel in basic solution Assignment 3 Complete and balance the following equation Fe 2 O 3 + HCl Coordination Chemistry A coordination compound (complex), contains a central metal atom (or ion) surrounded by a number of oppositely charged ions or neutral molecules (possessing lone pairs of electrons) which are known as ligands. If a ligand is capable of forming more than one bond with the central metal atom or ion, then ring structures are produced which are known as metal chelates the ring forming groups are described as chelating agents or polydentate ligands. The coordination number of the central metal atom or ion is the total number of sites occupied by ligands. Note: a bidentate ligand uses 2 sites, a tridentate 3 sites etc. CHEM261HC/SS1/13 7

Ligands molecular Lewis Lewis donor coordination formula base/ligand acid atom number [Zn(CN) 4 ] 2- CN - Zn 2+ C 4 [PtCl 6 ] 2- Cl - Pt 4+ Cl 6 [Ni(NH 3 ) 6 ] 2+ :NH 3 Ni 2+ N 6 CHEM261HC/SS1/14 Mono-dentate Multidentate ligands Abbreviation Name Formula en Ethylenediamine ox 2- Oxalato EDTA 4- Ethylenediaminetetraacetanato CHEM261HC/SS1/15 8

Chelating ligands bond to metal forms rings chelate rings Five or six atoms rings are common (i.e. including metal) Coordination numbers and geometries Linear Square planar Tetrahedral Octahedral CHEM261HC/SS1/16 Nomenclature of Coordination Compounds The basic protocol in coordination nomenclature is to name the ligands attached to the metal as prefixes before the metal name. Some common ligands and their names are listed above. 9

As is the case with ionic compounds, the name of the cation appears first; the anion is named last. Ligands are listed alphabetically before the metal. Prefixes denoting the number of a particular ligand are ignored when alphabetizing. Example cation anion [Co(NH 3 ) 5 Cl]Cl 2 Pentaamminechorocobalt(III) chloride 5 NH 3 ligands Cl ligands cobalt in +3 oxidation states The names of anionic ligands end in o ; the endings of the names of neutral ligands are not changed. Prefixes tell the number of a type of ligand in the complex. If the name of the ligand itself has such a prefix, alternatives like bis-, tris-, etc., are used. Example [Co(NH 2 CH 2 CH 2 NH 2 ) 2 Cl 2 ] + cation dichlorobis(ethylenediammine)cobalt(iii) 2 Cl ligands 2 en ligands with 2 NH 2 groups en = ethylenediammine cobalt in +3 oxidation states 10

If the complex is an anion, its ending is changed to -ate. The oxidation number of the metal is listed as a roman numeral in parentheses immediately after the name of the metal. Example Na 2 [MoOCl 4 ] Exercise 1 Name the following coordination complexes: (i) Cr(NH 3 )Cl 3 (ii) Pt(en)Cl 2 (iii) [Pt(ox) 2 ] 2- Exercise 2 Give the chemical formular for the following coordination complexes: (i) Tris(acetylacetanato)iron(III) (ii) Hexabromoplatinate(2-) (iii) Potassium diamminetetrabromocobaltate(iii) 11

Solutions (i) Cr(NH 3 )Cl 3 chromium(iii) ammine trichloro Amminetrichlorochromium(III) (ii) Pt(en)Cl 2 Platinum(II) ethylenediammine dichloro Dichloroethylenediammineplatinum(II) (iii) [Pt(ox) 2 ] 2- Platinate(II) dioxalato Dioxalatoplatinate(II) Solutions (i) Tris(acetylacetanato)iron(III) Fe(acac) 3 3+ Fe ( acac) 3 (ii) Hexabromoplatinate(2-) [PtBr 6 ] 2- Pt Br [ ] 2-6 (ii) Potassium diamminetetrabromocobaltate(iii) i t b t K[Co(NH 3 ) 2 Br 4 ] 3+ K ( NH 3 ) 2 Br 4 Co 12

Isomers Primarily in coordination numbers 4 and 6. Arrangement of ligands in space and also the ligands themselves. Types Ionization isomers Isomers can produce different ions in solution e.g. [PtCl 2 (NH 3 ) 4 ]Br 2 [PtBr 2 (NH 3 ) 4 ]Cl 2 Polymerization isomers Same empirical formula or stoichiometry, but different molar mass. Different compounds with similar formula [MX x B b ] n e.g. [Co(NH 3 ) 3 (NO 2 ) 3 ] ( n =1) [Co(NH 3 ) 6 ] 3+ [Co(NO 2 ) 6 ] 3 ( n =2) [Co(NH 3 ) 4 (NO 2 ) 2 ] + [Co(NH 3 ) 2 (NO 2 ) 4 ] ( n =2) CHEM261HC/SS1/17 Hydration isomers Hydration isomers exist for crystals of complexes containing water molecules e.g. CrCl 3 6H 2 O exist in three different crystalline forms, in which the number of water molecules directly attached to the Cr 3+ ion differs [Cr(H 2 O) 4 Cl 2 ]Cl 2H 2 O [Cr(H 2 O) 5 Cl]Cl 2 H 2 O [Cr(H 2 O) 6 ]Cl 3 dark green light green gray-blue In each case, the coordination number of the chromium cation is 6 13

Coordination isomers In compounds, both cation and anion are complex, the distribution of ligands can vary, giving rise to isomers. [Co(NH 3 3) 3+ [Cr(CN) -3 and [Cr(NH 3 +3 [Co(CN) -3 6 ] 6 ] 3) 6 ] 6 ] Linkage isomers How the ligands arrange themselves and attach to the central metal Yellow e.g. Nitro and nitrito (a) [Co(NO 2 )(NH 3 ) 5 ] 2+ N or O coordination possible (b) [Co(ONO)(NH 3 ) 5 ] 2+ Red CHEM261HC/SS1/18 Geometric isomers Formula is the same but the arrangement in 3 D space is different. e.g. square planar molecules give cis and trans isomers. CHEM261HC/SS1/19 14

For hexacoordinate systems Purple Green CHEM261HC/SS1/20 For M(X) 3 (Y) 3 systems (e.g. octahedral) there is facial and meridian Facial When three identical ligands occupy one face of an octahedron any two identical ligands are adjacent or cis to each other Meridian If these three ligands and the metal ion are in one plane CHEM261HC/SS1/21 15

Example Co Octahedral geometry cis-[cocl 2 (NH 3 ) 4 ] + trans-[cocl 2 (NH 3 ) 4 ] + fac-[cocl 3 (NH 3 ) 3 ] mer-[cocl 3 (NH 3 ) 3 ] Stereoisomer Are stereoisomers also possible? An analogy to organic chirality. molecules that have the same molecular formula and sequence of bonded atoms (constitution), but which differ only in the three-dimensional orientations of their atoms in space Molecules which can rotate light. Enantiomers non-superimposable mirror images CHEM261HC/SS1/22 16

Complex Stabilities Generally in aqueous solution, for a given metal and ligand, complexes where the metal oxidation state is +3 are more stable than +2 Generally the stabilities of complexes of the first row of transition metals vary in reverse of their cationic radii Mn II <Fe II <Co II <Ni II >Cu II >Zn II Hard and soft Lewis acid-base theory small atomic/ionic radius Hard acids and bases tend to have: high oxidation state low polarizabilty high electronegativity hard bases - energy low-lying HOMO hard acids - energy high-lying LUMO CHEM261HC/SS1/23 Chelate effect - is the additional stability of a complex containing a chelating ligand, relative to that of a complex containing monodentate ligands with the same type and number of donors as in the chelate. [Cu(H 2 O) 4 (NH 3 ) 2 ] 2+ + en [Cu(H 2 O) 4 (en)] 2+ + 2 NH 3 CHEM261HC/SS1/24 17

Mainly an entropy effect. Cu(H 2 O) 4 (NH 3 ) 2 ] 2+ + en = [Cu(H 2 O) 4 (en)] 2+ +2NH 3 When ammonia molecule dissociates swept off in solution and the probability of returning is remote. When one amine group of en dissociates from complex ligand retained by end still attached so the nitrogen atom cannot move away swings back andattachattach to metal again. Therefore the complex has a smaller probability of dissociating. CHEM261HC/SS1/25 Example CHEM261HC/SS1/26 18

Metal carbonyl Compounds that have the metal bonded to the carbon monoxide, giving a general formula of M(CO) n M + CO M(CO) n M C O -orbitals in CO are very empty Molecular orbital diagram (CO) Therefore the bond order is: 4 1 = 3 Bond order: No.ofe - pairs in the bonding orbital No.ofe - pairs in the anti-bonding orbital 19

Back-bonding (back donation) Formation of -bonding as a result of the overlap of metal d - orbitals and the ligand, CO, * orbitals Effects: It enhances the bonding strength between the metal and the ligand. The metal-ligand bond is shortened (M CO) The C O becomes longer, weaker and the bond order decreases Evidence and extent IR spectra Vibration frequency The greater the extent of back bonding the lower the stretching frequency (bond order decreases) C O Free C O 2143 cm -1 M CO 1900-2125 cm -1 Effect of replacing the CO ligands Non- accepting ligands (donor ligands) Trien Cr(CO) 6 Cr(triens)(CO) 3 2100 cm -1 2000 cm -1 1900 cm-1 1985 cm -1 1760 cm -1 Replacement of the 3 x (CO) groups with donor ligands (trien) increases - acidity of the remaining ligands (CO) so as to counter the accumulation of the negative charge on the metal centre 20

Effect of introducing a positive charge on metal complex V(CO) 6-1 proton 1proton + V(CO) 6 V(CO) 6 1860 cm -1 2000 cm -1 2090 cm -1 Introducing a +ve charge on the metal inhibits shift of electrons from metal to empty * - orbital of the CO ligands This weakens -bonding or decrease stretching frequencies of M-C while the C O increases. (wave number or frequency increases) Thought V(CO) - and Cr(CO) are isoelectronic yet stretching frequencies of CO in V(CO) 6 is lower than that of CO in Cr(CO) 6? The origin of colour - absorption CHEM261HC/SS1/27 21

Colours on coordination compounds The colour can change depending on a number of factors e.g. Metal charge Ligand Physical phenomenon CHEM261HC/SS1/29 22

Are there any simple theories to explain the colours in transition metal complexes? There is a simple electrostatic model used by chemists to rationalize the observed results This theory is called Crystal Field Theory It is not a rigorous bonding theory but merely a simplistic approach to understanding the possible origins of photo- and electrochemical properties of the transition metal complexes CHEM261HC/SS1/30 23