Comprehensive Understanding of Carrier Mobility in MOSFETs with Oxynitrides and Ultrathin Gate Oxides

Similar documents
Effect of Remote-Surface-Roughness Scattering on Electron Mobility in MOSFETs with High-k Dielectrics. Technology, Yokohama , Japan

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

QUANTIZATION of the transverse electron motion in the

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Effect of polysilicon depletion charge on electron mobility in ultrathin oxide MOSFETs

SILICON-ON-INSULATOR (SOI) technology has been

Threshold voltage shift of heteronanocrystal floating gate flash memory

an introduction to Semiconductor Devices

Capacitance-Voltage characteristics of nanowire trigate MOSFET considering wave functionpenetration

Universal Mobility-Field Curves For Electrons In Polysilicon Inversion Layer

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Electrostatics of Nanowire Transistors

Section 12: Intro to Devices

Timing Simulation of 45 nm Technology and Analysis of Gate Tunneling Currents in 90, 65, 45, and 32 nm Technologies

Section 12: Intro to Devices

Long-channel MOSFET IV Corrections

A Theoretical Investigation of Surface Roughness Scattering in Silicon Nanowire Transistors

Numerical and experimental characterization of 4H-silicon carbide lateral metal-oxide-semiconductor field-effect transistor

MOS CAPACITOR AND MOSFET

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ECE 340 Lecture 39 : MOS Capacitor II

Volume inversion mobility in SOI MOSFETs for different thin body orientations

MOS Capacitors ECE 2204

Effect of interface-roughness scattering on mobility degradation in SiGe p-mosfets with a high-k dielectric/sio 2 gate stack

Lecture 6: 2D FET Electrostatics

Lecture 12: MOS Capacitors, transistors. Context

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Control of Flat Band Voltage by Partial Incorporation of La 2 O 3 or Sc 2 O 3 into HfO 2 in Metal/HfO 2 /SiO 2 /Si MOS Capacitors

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Extensive reading materials on reserve, including

Characterization of Charge Trapping and Dielectric Breakdown of HfAlOx/SiON Dielectric Gate Stack

EECS130 Integrated Circuit Devices

C-V and G-V Measurements Showing Single Electron Trapping in Nanocrystalline Silicon Dot Embedded in MOS Memory Structure

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

EECS130 Integrated Circuit Devices

Measurement and Modeling of the n-channel and p-channel MOSFET s Inversion Layer Mobility at Room and Low Temperature Operation

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric

Surface roughness at the Si SiO 2 interfaces in fully depleted silicon-on-insulator inversion layers

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Choice of V t and Gate Doping Type

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Semiconductor Physics fall 2012 problems

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

A Computational Model of NBTI and Hot Carrier Injection Time-Exponents for MOSFET Reliability

Semiconductor Physics Problems 2015

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Gate Carrier Injection and NC-Non- Volatile Memories

Classification of Solids

Appendix 1: List of symbols

A -SiC MOSFET Monte Carlo Simulator Including

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

Surfaces, Interfaces, and Layered Devices

MENA9510 characterization course: Capacitance-voltage (CV) measurements

Part 5: Quantum Effects in MOS Devices

CONSTANT CURRENT STRESS OF ULTRATHIN GATE DIELECTRICS

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Electrical Characteristics of MOS Devices

Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects

FIELD-EFFECT TRANSISTORS

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).


T quite useful for characterizing the inversion layer mobility

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Long Channel MOS Transistors

MONTE CARLO SIMULATION OF THE ELECTRON MOBILITY IN STRAINED SILICON

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Electron Momentum and Spin Relaxation in Silicon Films

NITROGEN CONTAINING ULTRA THIN SiO 2 FILMS ON Si OBTAINED BY ION IMPLANTATION

A Physically Based Analytical Model to Predict Quantized Eigen Energies and Wave Functions Incorporating Penetration Effect

Evaluation of the plasmaless gaseous etching process

Modeling and Computation of Gate Tunneling Current through Ultra Thin Gate Oxides in Double Gate MOSFETs with Ultra Thin Body Silicon Channel

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

= (1) E inj. Minority carrier ionization. ln (at p ) Majority carrier ionization. ln (J e ) V, Eox. ~ 5eV

!""#$%&'("')*+,%*-'$(,".,#-#,%'+,/' /.&$0#%#'/(1+,%&'.,',+,(&$+2#'3*24'5.' 6758!9&!

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

GaAs and InGaAs Single Electron Hex. Title. Author(s) Kasai, Seiya; Hasegawa, Hideki. Citation 13(2-4): Issue Date DOI

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Analytical Modeling of Threshold Voltage for a. Biaxial Strained-Si-MOSFET

Glasgow eprints Service

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Two-Dimensional Quantum-Mechanical Modeling for Strained Silicon Channel of Double-Gate MOSFET

CHAPTER 3. EFFECT OF STRUCTURAL AND DOPING PARAMETER VARIATIONS ON f t, NQS DELAY, INTRINSIC GAIN AND NF IN N-TYPE FINFETS

Negative Capacitance Tunnel Field Effect Transistor: A Novel Device with Low Subthreshold Swing and High ON Current

Transient Charging and Relaxation in High-k Gate Dielectrics and Their Implications

IBM Research Report. Quantum-Based Simulation Analysis of Scaling in Ultra-Thin Body Device Structures

Stretching the Barriers An analysis of MOSFET Scaling. Presenters (in order) Zeinab Mousavi Stephanie Teich-McGoldrick Aseem Jain Jaspreet Wadhwa

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC

Formation of unintentional dots in small Si nanostructures

Transcription:

Comprehensive Understanding of Carrier Mobility in MOSFETs with Oxynitrides and Ultrathin Gate Oxides T. Ishihara*, J. Koga*, and S. Takagi** * Advanced LSI Technology Laboratory, Corporate Research & Development Center, Toshiba Corporation, 8 Shinsugita-cho, Yokohama 35-85, Japan ishihara@amc.toshiba.co.jp **Department of Frontier Informatics, Graduate School of Frontier Science, The University of Tokyo, 7-3- Hongo, Bunkyo-ku, Tokyo, 3-8656, Japan Abstract Inversion-layer mobility in MOSFETs is quantitatively examined by taking MOSFETs with oxynitride and ultra-thin gate oxides as examples. It was shown that additional Coulomb tering due to charged impurities in poly-si gate and due to fixed charges in oxynitride gate oxides is responsible for the mobility degradation in low effective electric field region for ultra-thin gate oxides and oxynitride gate oxides, respectively. For high effective electric field region, the different behavior of inversion-layer mobility between s and s associated with oxynitridation can be reasonably well explained by the appropriate choice of the form of the roughness correlation function. This paper focuses on the fact that Coulomb and surface roughness tering are key tering components for the unified understanding of carrier mobility in inversion layers of future MOSFETs. Introduction Thinner gate oxide layer, high-k dielectric layer, or oxynitride gate layer are considered to be promising candidates for application as gate dielectrics in future MOSFETs characterized by aggressive scaling down of device sizes. The significant change in inversion-layer mobility associated with these gate dielectrics has been observed experimentally [,,3,4]. For example, in MOSFETs with oxynitride gate oxides low field mobility shows significant degradation for both s and s, while high field mobility exhibits different behavior for s and s, as is shown in Fig. []. In MOSFETs with ultra-thin gate oxides, the inversion-layer mobility exhibits a significant reduction in gate oxides thinner than a critical thickness [3,4] (Fig.. Although much theoretical work has been done on inversion-layer mobility in MOSFETs with pure and thicker gate oxides, the origin of the change in inversion-layer mobility in MOSFETs with the above-mentioned gate dielectrics has not been fully understood yet. Considering the fact that the dominant tering components in low and high field region are Coulomb and surface roughness tering, respectively, Coulomb and surface roughness tering are key tering components for the comprehensive understanding of transport properties in inversion

layers of future MOSFETs [5]. By taking MOSFETs with oxynitride and ultra-thin gate oxides as examples, we examine transport properties in inversion layers based on the model calculation of the mobility limited by Coulomb and surface roughness tering. Since the physical basis of the models used is important, we describe in section the Coulomb and surface roughness tering model used in this study. By comparing the calculated and the experimental results of the inversion-layer mobility, we show in sections 3 and 4 that the change in the inversion-layer mobility can be comprehensively understood by considering additional Coulomb tering and modulated surface roughness tering. The conclusions are given in section 5. Mobility [cm /V sec] 8 PO(SiO NO(SiON. E eff [ MV /cm ] 5. E eff [ MV /cm ] Mobility [cm /V sec] N poly =6x 9 cm -3 universal curve q E eff = ( N dep + N e s Tox=5.7nm Tox=.nm Tox=.9nm Tox=.5nm.. E eff [MV/cm] Si Figure : Dependence of effective mobility on the effective electric field, E eff, for pure oxides and oxynitrides []. Figure : Dependence of inversion-layer mobility on effective electric field, Eeff, for nmosfets with different Tox [4]. The gate impurity concentration is 6 9 cm -3. Solid line stands for the universal mobility curve. Scattering model. Coulomb tering As shown in Fig. 3, the MOS structure is composed of a medium with permitivity ε g for z (gate, an insulator with permitivity ε ox for <z t ox (gate oxide, and a silicon substrate with permitivity ε si for z>t ox. In the MOS structure, the significant depth profile of electrostatic potential is formed as is schematically shown in Figure 3 (a. The potential distributions, V gate (poly-si gate, V ox (gate oxide, V si (substrate, are determined from the Poisson s equations in Fig. 3(a, where ρ si (R and ρ gate (R are carrier distributions in the substrate and the poly-si gate. We also assume the fixed charge distribution in the gate oxide as shown in Fig. 3. Before starting the study, it is important to recognize that the discrete distribution of Coulomb centers is embedded in the background of the electrostatic potential with significant depth profile, as is shown schematically in Fig. 3(b. Given this standpoint, the key for the formulation of Coulomb tering is to take into account the screening effect due to free carriers in the inversion layer [6] and in the poly-si gate [7,8,9]. The net potential distribution φ(r is determined from the general Poisson equation including the discreteness of Coulomb centers, as is shown in Fig. 3(b,

where we express the position vector in the substrate as R=(r,z and that in the gate oxide and the poly-si gate as R =(r,z. The tering potential φ (R responsible for Coulomb tering needs to be extracted from φ(r. Here we make our first assumption, namely, that φ (R is given as φ R = φ R z ( ( ( ( V j where j=si, ox, gate. To obtain φ (R, we make our second assumption, namely, that ρ si (R and ρ gate (R are expanded in terms of φ (R as ε si k ik ρ si( R ρsi( z + si φ( r ( e i, k ε poly ρ gate( R' ρgate( R' + qd ( z' φ( R' (3 e k where s i is the screening parameter for the sub-band in the valley k and q d (z is the position-dependent Debye screening length which is expressed as in Fig. 4(b, and ik ( r dzg ( z φ ( R φ (4 ik Here g ik (z is normalized charge density in the inversion layer for sub-band i in valley k. e e ρgate( z' F ( η( z' E F + evgate( z' Vgate( z' = ( N D ρgate ( z' qd ( z' = η ( z ' = ε ε sikbt F ( η( z' kbt poly z z Poly-Si gate Poly-Si gate t ox V gate V gate Fixed charges t fix V si V si Substrate Substrate z z e Vsi( z = ( N A + ρsi( z 3 [ ε ( z φ( R ] = e ( + ( ε δ R R i ρsi R si si 3 N D : Donor concentration e δ ( R ' R i ox i N A : Acceptor concentration 3 N e δ i gate ' fixδ ( z t fix : fixed charge distribution gate (a (b ( R' R ρ ( R Figure 3: Schematic diagram of MOS structure. Substituting eqs. (, ( and (3 into the general Poisson equation in Fig. 3(b, we obtain the Poisson equation for the net tering potential φ (R 3 k ik [ ε ( z φ( R ] = e δ ( R' Ri N D + ε si si φ( r gate i, k 3 e δ ( R' Ri N fixδ ( z t fix + ε polyqd ( z' φ( R' (5 ox

It should be noted here that the screening effect due to free carriers in the poly-si gate is taken into account by ε poly q d (z φ (R in eq. (5. Since this term vanishes except for the poly-si gate, the screening effect due to free carriers in the poly-si gate only acts on Coulomb tering by impurities in the poly-si gate (RCS. Based on eq. (5, Poisson equations for the tering potential responsible for Coulomb tering due to fixed charges, φ fix (R, and that for the tering potential due to charged impurities in the poly-si gate, φ rcs (R, are expressed as fix 3 [ ε( z φ( R ] = e δ ( R' Ri N fixδ ( z t fix ox k fix, ik + ε φ r (6 si s i i, k ( rcs 3 k ik [ ( ( ] = ( rcs, ε z φ R e δ R' R N ε s φ ( r i + gate D si i i, k rcs + ε q z' φ R' (7 poly d ( ( In the following, mobility limited by Coulomb tering is calculated based on eq. (6 and (7 using relaxation time approximation... Surface roughness tering under oxynitride gate oxides The mobility limited by surface roughness tering, µ SR, is characterized not only by (roughness rms value and Λ (correlation length, but also by roughness power spectrum S(q. Pirovano et al. [] have proposed the functional form of n ( qλ 4 S( q = π ( Λ e (8 The value of the parameter n has been adjusted so as to successfully reproduce the universality of both and mobility under the same parameters and Λ in MOSFETs with pure oxides. On the other hand, the use of the following roughness correlation function in real space is another possible approach to give the functional form of S(q S ( r e n r Λ r = (9 The functional form of S(q is obtained by the Fourier transform of S r (r as S ( q = ( Λ dxxe x n J ( qλx π ( It has been found that µ SR is much more sensitive to the change in n than µ SR []. This fact is the key point for the quantitative understanding of µ SR in MOSFETs with oxynitride gate oxides. In the following, µ SR is calculated based on the relaxation time approximation.

3 Inversion-layer mobility in MOSFETs with oxynitride gate oxides 3. Low field mobility Fixed charges are known to exist in oxynitride gate oxides based on the observation of flat-band voltage shift, V FB []. Fixed charges cause the increase of Coulomb tering and are considered to be the origin of the mobility degradation in low effective electric field in MOSFETs with oxynitride gate oxides [] shown in Fig.. Fig. 4 shows the calculated N s dependence of mobility limited by fixed charges, µ c, for NO oxynitride for various fixed charge densities. The value of t fix =.6nm is used which is determined from the peak position of the Si-O-N bond measured based on Fourier Transformation InfraRed spectroscopy (FT-IR since Si-O-N bond is considered to be the origin of the fixed charges. The good agreement between the calculation and experiment is observed in Fig. 4. It is found from Fig. 5 that the fixed charge densities extracted by the fitting method agree well with those obtained based on the flat-band voltage shift. The above results demonstrate that the mobility degradation in low effective electric field is attributable to the fixed charges. µ fix ( 4 cm / V s.. Calculation N fix =. cm - N fix = 3.3 cm - N fix = 6.6 cm - N sub =3 5 cm -3..5. 5. N s ( cm - Figure 4: Ns dependence of calculated µ c for NO oxynitride for various fixed charge densities []. Fixed charge density ( cm - Extracted by fitting of mobility Extracted from V FB.5.5 3 3.5 4 4.5 5 Nitrogen density( 4 cm - Figure 5: Comparison of the fixed charge densities obtained by V FB and by the fitting of µ c []. 3. High field mobility It is found from Fig. that high field mobility, limited by surface roughness tering, µ SR, exhibits different behavior for s and s. This incomprehensible behavior of µ SR cannot be explained by the fitting of or Λ. The key point for the quantitative understanding of this behavior of µ SR is to find the appropriate form of the correlation function of the surface roughness, since µ SR is largely affected by the change in the value of n through the change in the form of S(q [9]. Fig. 6 shows S(q calculated by eq. ( in wave number space as a parameter of n and the range of and k F, where Ns is varied from 5 cm - to 3 cm - ; these values of Ns are typical for surface roughness tering. Here, k F is Fermi

wave number, k F =(πn s /g /, where g is the degeneracy in the lowest sub-band. Since g= for s and g= for s, k F for s is larger than that of s. Considering the fact that the inversion layer carrier gas is degenerate in the range of surface carrier concentration where µ SR is dominant, µ SR is mostly determined by k F. Therefore, the behavior of S(q around k F is the key for the understanding of µ SR. It is found in Fig. 6 that the change in the value of n, which determines the functional form of S(q, has a much large impact on the value of S(q for s than for s, because k F is larger than k F. This result suggests that µ SR is much more sensitive to the change in n than µ SR. This prediction is actually confirmed in Fig. 7. For NO oxynitride, Fig. 8 shows that when n is taken to be. and is taken to be a smaller value (.45nm than that with pure oxide (PO (.55nm, and µ SR with NO can be consistently represented under a common parameter set. The above results are schematically shown in Fig. 9. It is concluded from the analysis for the correlation function form that the increase in µ SR with NO and the decrease in µ SR with NO versus µ SR with PO are attributable to the decrease in and the increase in n, respectively. This indicates that NO oxidation significantly changes the nature of interface geometry and suggests that the surface roughness formed by NO oxidation has more enhanced randomness (larger n, while the height of roughness decreases, compared to that with thermal oxidation. S(q/ (.6.4..8.6.4. n=.9 n= Ns ( cm 5 5 k F 5 6 7 7 q(wavenumber(cm - Figure 6: Power spectral densities obtained by eq. ( as a parameter of n []. µ SR (cm / V sec 5 4 3.3 NO Figure 8: E eff dependence of µ SR for NO oxynitrides. The value of is taken to be.45nm and Λ to be.7nm []. k F Experimental data n=.9 n=. E eff (MV / cm µ SR (cm / V sec 4 3.3 PO Experimental data n=.9 n=. E eff (MV / cm Figure 7: E eff dependence of µ SR for PO oxides. The value of is taken to be.55nm and that of Λ to be.7nm []. µ SR (cm / V sec NO PO PO NO decrease in E eff Figure 9: Schematic diagram of and of µ SR for PO and NO and physical origin of the difference []. increase in n

4 Mobility degradation in MOSFETs with ultra-thin gate oxides It has been reported that the inversion layer mobility exhibits a significant reduction in gate oxides thinner than a critical thickness [3,4], as shown in Fig.. Since reliable experimental results suggest that the mobility lowering in ultra-thin gate oxides can be associated with remote Coulomb tering (RCS due to impurities in the poly-si gate, we show in Fig. the comparison of the experimental mobility lowering and the calculated results of µ rcs by the present model described in section. Note that the experimental mobility-lowering was extracted by using Matthiessen s rule. It is found that the N poly (impurity density in the poly-si gate dependence of µ rcs is well represented by the present model, but not by the depletion approximation (DA [3,4]. This fact indicates that ( the experimental mobility lowering is attributable to RCS and that ( the depletion approximation is inappropriate. As a result, the consideration of all impurities in the poly-si gate under the screening effect due to free carriers in the poly-si gate is essential to the description of the mobility lowering in ultra-thin gate oxides. It is also found from Fig. that the t ox dependence of µ rcs is well reproduced by the present model. It should be noted here that µ rcs in the present model provides exp(- qt ox dependence, where q is the two-dimensional wave number. The good agreement between the calculated and experimental results indicates that the mobility lowering in ultra-thin gate oxides exhibits exponential dependence on t ox. Therefore, the mobility degradation due to RCS becomes more significant in MOSFETs with ultra-thin gate oxides. µ rcs ( 3 cm /V sec Present model Nsub=8 4 cm -3 Depletion approximation N poly = 9 cm -3 Experimental data N poly =6 9 cm -3 Ns ( cm - Figure : Comparison of the experimental mobility-lowering component [4] with µ rcs calculated by the present model and by depletion approximation [7]. µ rcs (cm /V sec 6 5 4 3 Calculation Experimental data N poly =5 9 cm -3 Nsub=3 6 cm -3 Ns= cm -.5.5.5 3 Gate Oxide Thickness (nm Figure : Comparison of the experimental mobility-lowering component [3] with µ rcs calculated by the present model as a function of t ox at N s of cm - [7]. 5 Conclusions Inversion layer mobility in MOSFETs with oxynitride and ultra-thin gate oxides has been quantitatively examined. For MOSFETs with oxynitride gate oxides, the

degradation of low field mobility is attributable to the increased Coulomb tering due to fixed charges, while the change in and mobility in high field region associated with NO oxynitridation can be reasonably well explained by the appropriate choice of the form of the roughness correlation function. For MOSFETs with ultra-thin gate oxides, a significant reduction of inversion layer mobility can be explained well by remote Coulomb tering due to impurities in the poly-si gate, which is formulated by taking into account the coexistence of charged impurities and free carriers in the gate region together with an appropriate consideration of the screening effect. Thus, the accurate modeling of Coulomb and roughness tering is the key for the comprehensive understanding of carrier transport properties in MOS inversion layers. References [] M. Takayanagi, and Y. Toyoshima, Tech. Dig. Int. Electron Devices Meet. (998, pp. 575-578. [] T. Yamaguchi, R. Iijima, T. Ino, A. Nishiyama, H. Satake and N. Fukushima, Tech. Dig. Int. Electron Devices Meet. (, pp. 6-64. [3] S. Takagi and M. Takayanagi, "Experimental evidence of inversion-layer mobility lowering in ultrathin gate oxide metal-oxide-semiconductor field-effect transistors with direct tunneling current, Jpn. J. Appl. Phys. Vol. 4, pp. 348-35,. [4] J. Koga, T. Ishihara, and S. Takagi, "Effect of gate impurity concentration on inversionlayer mobility in MOSFETs with ultrathin gate oxide layer, IEEE Electron Device Lett., vol. 4, pp. 354-356, 3. [5] S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, Tech. Dig. Int. Electron Devices Meet. (3, pp. 797-8. [6] F. Stern and W. E. Howard, "Properties of semiconductor surface inversion layers in the electric quantum limit, Phys. Rev. 63, pp. 86-835, 967. [7] T. Ishihara, J. Koga, S. Takagi, and K. Matsuzawa, Int. Conf. On Solid State Devices and Materials. (3, pp. -3. [8] D. Esseni and A. Abramo, "Modeling of Electron mobility degradation by remote Coulomb tering in ultrathin oxide MOSFETs, IEEE Trans. Electron Devices., vol. 5, pp. 665-674, 3. [9] F. Gámiz and M. V. Fischetti, "Remote Coulomb tering in metal-oxidesemiconductor field effect transistors: Screening by s in the gate, Appl. Phys. Lett., vol. 83, pp. 4848-485, 3. [] A. Pirovano, A. L. Lacaita, G. Zandler, and R. Oberhuber, "Explaining the dependence of the and mobilities in Si inversion layers, IEEE Trans. Electron Devices., vol. 47, pp. 78-447,. [] T. Ishihara, K. Matsuzawa, M. Takayanagi, and S. Takagi, "Comprehensive understanding of and mobility limited by surface roughness tering in pure oxides and oxynitrides based on correlation function of surface roughness", J. J. Appl. Phys., vol. 4, pp. 353-358,. [] T. Ishihara, S. Takagi, and M. Kondo, "Quantitative understanding of mobility limited by Coulomb tering in metal oxide semiconductor field effect transistors with N O and NO oxynitrides", Jpn. J. Appl. Phys., vol. 4, pp. 597-6,. [3] N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, "Estimation of the effects of remote charge tering on mobility of n-mosfets with ultrathin gate oxides, IEEE Trans. Electron Devices., vol. 47, pp. 44-447,. [4] S. Saito, K. Torii, M. Hiratani, and T. Onai, "Improved theory for remote-chargetering-limited mobility in metal-oxide semiconductor transistors, Appl. Phys. Lett., vol. 8, pp. 39-393,.