A solution in Weyl gravity with planar symmetry

Similar documents
General Relativity (225A) Fall 2013 Assignment 8 Solutions

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

Lecture VIII: Linearized gravity

Chapter 2 General Relativity and Black Holes

Properties of Traversable Wormholes in Spacetime

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016

Variational Principle and Einstein s equations

Week 9: Einstein s field equations

Continuity Equations and the Energy-Momentum Tensor

arxiv:gr-qc/ v1 31 May 2006

Gravitation: Gravitation

Lecture: General Theory of Relativity

Junction conditions in quadratic gravity: thin shells and double layers

Weyl Gravity as a Gauge Theory

Tensor Calculus, Part 2

2.1 The metric and and coordinate transformations

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

PAPER 52 GENERAL RELATIVITY

Gauging Newton s Law

Exercise 1 Classical Bosonic String

arxiv: v3 [hep-th] 5 Nov 2014

Notes on General Relativity Linearized Gravity and Gravitational waves

Non-Abelian and gravitational Chern-Simons densities

Review of General Relativity

A sky without qualities

arxiv:gr-qc/ v1 7 Jan 1999

arxiv:gr-qc/ v1 11 Dec 2000

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

A Short Introduction to Tensor Analysis

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016

Curved Spacetime I. Dr. Naylor

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507,

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Introduction to General Relativity and Gravitational Waves

Chapter 7 Curved Spacetime and General Covariance

Massive gravitons in arbitrary spacetimes

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gravitational Gauge Theory and the Existence of Time

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten

Schwarzschild Solution to Einstein s General Relativity

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

General Relativity and Cosmology Mock exam

Rigidity of Black Holes

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

Einstein Toolkit Workshop. Joshua Faber Apr

arxiv:gr-qc/ v3 10 Nov 1994

Fourth Order Ricci Gravity

MATH 423 January 2011

= (length of P) 2, (1.1)

FRW cosmology: an application of Einstein s equations to universe. 1. The metric of a FRW cosmology is given by (without proof)

New Geometric Formalism for Gravity Equation in Empty Space

BMS current algebra and central extension

General Relativity and Differential

Constraints on Fluid Dynamics From Equilibrium Partition Func

New Geometric Formalism for Gravity Equation in Empty Space

Gravitational Waves. Basic theory and applications for core-collapse supernovae. Moritz Greif. 1. Nov Stockholm University 1 / 21

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4)

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Gauss-Bonnet Gravity with Scalar Field in Four Dimensions

arxiv: v2 [physics.gen-ph] 30 Dec 2014

The Geometric Scalar Gravity Theory

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Problem Set 1 Classical Worldsheet Dynamics

Gauging Newton s Law

Lectures on General Theory of Relativity

Exact Solutions of the Einstein Equations

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Physics 411 Lecture 13. The Riemann Tensor. Lecture 13. Physics 411 Classical Mechanics II

Chapter 2: Deriving AdS/CFT

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

arxiv:gr-qc/ v1 19 Feb 2003

Lecture 9: RR-sector and D-branes

BRANE COSMOLOGY and Randall-Sundrum model

Quantum Fields in Curved Spacetime

arxiv: v2 [gr-qc] 7 Jan 2019

Universiteit van Amsterdam. Cosmological Inflation

A rotating charged black hole solution in f (R) gravity

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity

On conformal anomalies and invariants in arbitrary dimensions

The Conformal Algebra

THE LANDSCAPE OF THEORETICAL PHYSICS: A GLOBAL VIEW. From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle

The l.h.s. of this equation is again a commutator of covariant derivatives, so we find. Deriving this once more we find

A brief introduction to modified theories of gravity

From Gravitation Theories to a Theory of Gravitation

arxiv:hep-th/ v1 31 Jan 2006

New conformal gauging and the electromagnetic theory of Weyl

Cosmology. April 13, 2015

The Hamiltonian operator and states

How to recognize a conformally Kähler metric

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

General Relativity (225A) Fall 2013 Assignment 6 Solutions

On Existance of a Large Symmetry Group for Non-Linear Sigma Models and a Self-Consistency Condition for P-Branes?

Casimir effect in background of static domain wall

Transcription:

Utah State University From the SelectedWorks of James Thomas Wheeler Spring May 23, 205 A solution in Weyl gravity with planar symmetry James Thomas Wheeler, Utah State University Available at: https://works.bepress.com/james_wheeler/7/

A solution in Weyl gravity with planar symmetry James T. Wheeler May 23, 205 Abstract We solve the Bach equation for Weyl gravity for the case of a static metric with planar symmetry. The solution is not conformal to the solution to the corresponding Einstein equation. Gauge choice We look at a static, planar symmetric line element of the form Define a new z coordinate, ds 2 = e 2fz) dt 2 + e 2gz) dx 2 + dy 2) + dz 2 ds 2 = e 2fz) dt 2 + e 2gz) dx 2 + dy 2) + e 2gz) dz 2 so that dz = e gz) dz. Then a conformal transformation by e 2g leaves us with ds 2 = e 2f g) dt 2 + dx 2 + dy 2 + dz 2 = h 2 Z) dt 2 + dx 2 + dy 2 + dz 2 where h Z) = e fzz)) gzz)). Since Weyl gravity is conformally invariant, we are solving for a conformal equivalence class of metrics, so we may always do this. Let Z z so the metric takes the form ds 2 = h 2 z) dt 2 + dx 2 + dy 2 + dz 2 2 Curvature Define an orthonormal basis, e 0 = hdt e = dx e 2 = dy e 3 = dz Then de 0 = h dz dt de = 0 de 2 = 0 de 3 = 0 Utah State University Dept of Physics email: jim.wheeler@usu.edu

The Cartan structure equation gives us de a = e b ω a b h dz dt = e b ω 0 b = e ω 0 + e 2 ω 0 2 + e 3 ω 0 3 = dx ω 0 + dy ω 0 2 + dz ω 0 3 ω 0 3 = h dt 0 = e b ω b = e 0 ω 0 + e 2 ω 2 + e 3 ω 3 = hdt ω 0 + dy ω 2 + dz ω 3 0 = e b ω b = e 0 ω 2 0 + e ω 2 + e 3 ω 2 3 = hdt ω 2 0 + dx ω 2 + dz ω 2 3 0 = e b ω 3 b = e 0 ω 3 0 = hdt h dt = 0 Thus the only nozero spin connection components are ω 3 0 = ω 0 3 = h dt = h h e0 Then the curvatures are R a b = dωa b ωc b ωa c but all the ω c b ωa c terms will depend on dt dt = 0 so we have only R 0 3 = dω 0 3 = d h dt) = h dz dt = h h e3 e 0 R 0 = R 0 2 = 0 R 2 = R 3 = R 2 3 = 0 and therefore, the Riemann curvature has the only one independent nonvanishing component, R 0 303 = h h2) Notice that the curvature here is equivalent to R 0303 = h h2) The Ricci tensor is R α βµν = Γ α βµ,ν Γ α βν,µ Γ α ρµγ ρ βν + Γα ρνγ ρ βµ R 00 = R 00 + R 2 020 + R 3 030 = h h2) R 33 = h h2) 2

and the Ricci scalar is R = η ab R ab For arbitrary h, find the Weyl curvature tensor, This gives = R 00 + R 33 = 2 h h2) C a bcd = R a bcd 2 δa c R bd δ a dr bc η bc R a d + η bd R a c) + 6 R δa c η bd δ a dη bc ) C 0 303 = R 0 303 R33 + η 33 R 0 2 0) + 6 Rη 33 = h h ) h 2 h h h h 3h = h 3h so any solutions with h nonzero are not conformally flat. The only components which involve R a bcd are this one, and those related by symmetry, e.g., C 3 030 = R 3 030 R00 + η 00 R 3 2 3) + 6 Rη 00 = h h ) h 2 h + h + h h 3h = h 3h All other nonvanishing components are of the form C a bcd = 2 δa c R bd δ a dr bc η bc R a d + η bd R a c) + 6 R δa c η bd δ a dη bc ) for example, = 2 δa c R bd δ a dr bc η bc R a d + η bd R a c) h 3h δa c η bd δ a dη bc ) C 33 = C 2 323 = 2 R 33 + 6 Rη 33 = h 2 h h 3h = 6h h C 00 = C 2 020 = 2 R 00 + 6 Rη 00 = h 2 h + 3h h = 6h h C 22 = h 3h 3

2. The Einstein equation The Einstein equation for this form of metric is trivial. With R 00 = h h2) R 33 = h h2) we have simply h 2) = 0 with linear solutions h = az + b. The curvature vanishes and the spacetime is flat, and therefore is not conformal to any solution with h 2) 0. 3 The Bach equation We may write the Bach equation as The second term on the left is not difficult: D µ D ν C αµβν 2 R µνc αµβν = κt αβ R µν C αµβν = R 00 C α0β0 + R 33 C α3β3 = h h Cα0β0 h = 0 h Cα3β3 Now we need the covariant derivatives. These are much easier to compute from the alternate form of the Bach equation, W αβ = 3 D αd β R + D µ D µ R αβ + 6 R 2 D µ D µ R 3R µν R µν) g αβ +2R µν R αµβν 2 3 RR αβ ) where our sign convention for the curvature shows up in the derivative terms. We have the following in an orthonormal basis: R 0 303 = h h2) R 0303 = h h2) R 00 = h h2) R 33 = h h2) In a coordinate basis, R = 2 h h2) R α βµν = e R 0 303 = e α a eβ α 0 eβ b eµ c eν d R a bcd 3 eµ 0 eν 3 R 0 303 = h h2) R 0303 = hh 2) 4

R 00 = hh 2) R 33 = h h2) 3. Connection Return to the metric so that and the only derivative is R = 2 h h2) dτ 2 = h 2 Z) dt 2 dx 2 dy 2 dz 2 g αβ = h 2 g 00,3 = 2hh Therefore from Γ 003 = Γ 030 = Γ 300 = hh we have: The curvatures are: 3.2 Derivatives We need the following derivatives: 3.2. d Alembertian of the Ricci tensor First, expand the derivatives: Γ 0 03 = Γ 0 30 = h h) Γ 3 00 = hh ) 2) R 0303 = hh 2) 3) R 00 = hh 2) 4) R 33 = h h2) 5) R = 2 h h2) 6) D µ D µ R αβ D α D β R D µ D µ R D µ D µ R αβ = g µν D µ D ν R αβ = g µν D µ ν R αβ R ρβ Γ ρ αν R αρ Γ ρ βν ) = g µν µ ν R αβ R ρβ Γ ρ αν R αρ Γ ρ βν ) g µν σ R αβ R ρβ Γ ρ ασ R αρ Γ ρ βσ Γ σ νµ ) g µν ν R σβ R ρβ Γ ρ σν R σρ Γ ρ βν Γ σ αµ g µν ν R ασ R ρσ Γ ρ αν R αρ Γ ρ σν) Γ σ βµ ) 5

For the 00 component this becomes D µ D µ R 00 = g µν µ ν R 00 R ρ0 Γ ρ 0ν R 0ρΓ ρ 0ν ) g µν σ R 00 R ρ0 Γ ρ 0σ R 0ρΓ ρ 0σ ) Γσ νµ g µν ν R σ0 R ρ0 Γ ρ σν R σρ Γ ρ 0ν ) Γσ 0µ g µν ν R 0σ R ρσ Γ ρ 0ν R 0ρΓ ρ σν) Γ σ 0µ = g 33 3 3 R 00 R 00 Γ 0 03 R 00 Γ 0 ) 03 g 00 3 R 00 R 00 Γ 0 03 R 00 Γ 0 03) Γ 3 00 g 00 R 00 Γ 0 30 R 33 Γ 3 00) Γ 3 00 g 33 3 R 00 R 00 Γ 0 03 R 00 Γ 0 03) Γ 0 03 g 00 R 33 Γ 3 00 R 00 Γ 0 30) Γ 3 00 g 33 3 R 00 R 00 Γ 0 03 R 00 Γ 0 03) Γ 0 03 Collecting terms, D µ D µ R 00 = 3 3 R 00 4 3 R 00 Γ 0 03 + h 2 3R 00 Γ 3 00 2R 00 3 Γ 0 03 + 4R 00 Γ 0 03Γ 0 03 4 h 2 R 00Γ 0 03Γ 3 00 2 h 2 R 33Γ 3 00Γ 3 00 Then with the connection and curvatures given by eqs.2-6) this becomes so D µ D µ R 00 = 3 3 hh 2)) 4 3 hh 2)) h h) + h 2 3 hh 2)) hh ) ) 2hh 2) 3 h h) + 4hh 2) h h h) h ) 4 h 2 hh2) h h) hh ) 2 h 2 ) h h2) hhh ) h ) The 33 component: = 3 3 hh 2)) 4 h 3 hh 2)) h ) + h 3 hh 2)) ) h ) 2hh 2) 3 h h) + 4 h h2) h ) h ) 4 h h2) h ) h ) + 2 h h2) h ) h ) = hh 4) + 2h ) h 3) + h 2) h 2) 4h 3) h ) 4 h h2) h ) h ) + h 3) h ) + h h2) h ) h ) 2h 2) h 2) + 2 h h2) h ) h ) + 4 h h2) h ) h ) 4 h h2) h ) h ) + 2 h h2) h ) h ) = hh 4) h 3) h ) h 2) h 2) + h h2) h ) h ) D µ D µ R 00 = hh 4) h 3) h ) h 2) h 2) + h h2) h ) h ) D µ D µ R 33 = g µν µ ν R 33 R ρ3 Γ ρ 3ν R 3ρΓ ρ 3ν ) 6

g µν σ R 33 R ρ3 Γ ρ 3σ R 3ρΓ ρ 3σ ) Γσ νµ g µν ν R σ3 R ρ3 Γ ρ σν R σρ Γ ρ 3ν ) Γσ 3µ g µν ν R 3σ R ρσ Γ ρ 3ν R 3ρΓ ρ σν) Γ σ 3µ = g 33 3 3 R 33 g 00 Γ 3 00 3 R 33 +g 00 R 33 Γ 3 00 + R 00 Γ 0 30) Γ 0 30 +g 00 R 00 Γ 0 30 + R 33 Γ 3 00) Γ 0 30 = 3 3 ) h h2) + h 2 hh) 3 ) h h2) h 2 h h2) hh ) + hh 2) ) h h) h h) h 2 hh 2) h h) ) h h2) hh ) h h) = 3 3 ) h h2) + h h) 3 ) h h2) = h h4) + h 2 h3) h ) + h 2 h2) h 2) h 3 h2) h ) h ) = g + h g h 3.2.2 d Alembertian of the scalar curvature The d Alembertian of R, D µ D µ R, follows immediately: D µ D µ R = g αβ D µ D µ R αβ = g 00 D µ D µ R 00 + g 33 D µ D µ R 33 = h 2 D µd µ R 00 + D µ D µ R 33 = h h4) + h 2 h3) h ) + h 2 h2) h 2) h 3 h2) h ) h ) h h4) + h 2 h3) h ) + h 2 h2) h 2) h 3 h2) h ) h ) = 2 h h4) + 2 h 2 h3) h ) + 2 h 2 h2) h 2) 2 h 3 h2) h ) h ) 3.2.3 Derivatives of the Ricci scalar Finally, we have the second derivative of the Ricci scalar, D α D β R = D α β R) = α β R µ R Γ µ βα D 0 D 0 R = 3 R Γ 3 00 = 3 2 h h2) ) hh ) = 2h 3) h ) 2 h h2) h ) h ) D 3 D 3 R = 3 3 R = 3 3 2 h h2) ) 7

= 3 2 h h3) + 2 h 2 h2) h ) ) Check the d Alembertian, = 2 h h4) + 2 h 2 h3) h ) + 2 h 2 h3) h ) + 2 h 2 h2) h 2) 4 h 3 h2) h ) h ) = 2 h h4) + 4 h 2 h3) h ) + 2 h 2 h2) h 2) 4 h 3 h2) h ) h ) D 3 D 3 R = 3 3 R = 3 3 2 h h2) ) = 2g = 2 h h4) + 4 h 2 h3) h ) + 2 h 2 h2) h 2) 4 h 4 h2) h ) h ) D µ D µ R = g µν D µ D ν R = g 00 D 0 D 0 R + g 33 D 3 D 3 R = h 2 2h 3) h ) 2 h h2) h ) h ) ) This agrees. 2 h h4) + 4 h 2 h3) h ) + 2 h 2 h2) h 2) 4 h 3 h2) h ) h ) = 2 h h4) + 2 h 2 h3) h ) + 2 h 2 h2) h 2) 2 h 3 h2) h ) h ) 3.2.4 Summary of derivatives The derivatives we need are: D µ D µ R = 2 h h4) + 2 h 2 h3) h ) + 2 h 2 h2) h 2) 2 h 3 h2) h ) h ) D 0 D 0 R = 2h 3) h ) 2 h h2) h ) h ) D 3 D 3 R = 2 h h4) + 4 h 2 h3) h ) + 2 h 2 h2) h 2) 4 h 3 h2) h ) h ) D µ D µ R 00 = hh 4) h 3) h ) h 2) h 2) + h h2) h ) h ) D µ D µ R 33 = h h4) + h 2 h3) h ) + h 2 h2) h 2) h 3 h2) h ) h ) 3.3 Algebraic parts We have W αβ = 3 D αd β R D µ D µ R αβ + 6 R 2 + D µ D µ R 3R µν R µν) g αβ +2R µν R αµβν 2 3 RR αβ so we need: R 2 D µ D µ R 3R µν R µν R µν R αµβν RR αβ 8

R 00 = hh 2) R 33 = h h2) Substituting from eqs.2-6), these are R 2 D µ D µ R 3R µν R µν = R = 2 h h2) 2 ) 2 h h2) + 2 h h4) 2 h 2 h3) h ) 2 h 2 h2) h 2) + 2 h 3 h2) h ) h ) 3 h 2 h2) h 2) + ) h 2 h2) h 2) = 2 h h4) 2 h 2 h3) h ) 4 h 2 h2) h 2) + 2 h 3 h2) h ) h ) R µν R 0µ0ν = R 33 R 0303 = h 2) h 2) R µν R 3µ3ν = R 00 R 3030 = h 4 hh2) hh 2) = h 2 h2) h 2) RR 00 = 2h 2) h 2) RR 33 = 2 h 2 h2) h 2) This gives all the elements we need to construct the Bach tensor. 3.4 Combine all terms With W αβ given by W αβ = 3 D αd β R + D µ D µ R αβ + 6 R 2 D µ D µ R 3R µν R µν) g αβ we first compute +2R µν R αµβν 2 3 RR αβ W 00 = 3 D 0D 0 R + D µ D µ R 00 + 6 R 2 D µ D µ R 3R µν R µν) g 00 +2R µν R 0µ0ν 2 3 RR 00 = 2h 3) h ) 2h ) 3 h2) h ) h ) + hh 4) h 3) h ) h 2) h 2) + h ) h2) h ) h ) 2 6 h2 h h4) 2 h 2 h3) h ) 4 h 2 h2) h 2) + 2 ) h 3 h2) h ) h ) +2 h 2) h 2)) 2 2h 2) h 2)) 3 = 2 3 hh4) 4 3 h3) h ) h 2) h 2) + 4 3 h h2) h ) h ) 9

Next, and finally, W = W 22 = 6 = 3 R 2 + D µ D µ R 3R µν R µν) h h4) h 2 h3) h ) 2 h 2 h2) h 2) + ) h 3 h2) h ) h ) W 33 = 3 D 3D 3 R + D µ D µ R 33 + 6 R 2 D µ D µ R 3R µν R µν) g 33 3.4. Check the trace +2R µν R 3µ3ν 2 3 RR 33 = 2 3 h h4) 4 3 h 2 h3) h ) 2 3 h 2 h2) h 2) + 4 3 h 3 h2) h ) h ) h h4) + h 2 h3) h ) + h 2 h2) h 2) h 3 h2) h ) h ) 3 h h4) h 2 h3) h ) 2 h 2 h2) h 2) + ) h 3 h2) h ) h ) +2 h 2 h2) h 2) 4 3 h 2 h2) h 2) = 2 3 h 2 h3) h ) + 3 h 2 h2) h 2) + 2 3 h 3 h2) h ) h ) The trace W α α vanishes identically, so we check: g αβ W αβ = g 00 W 00 + g W + g 22 W 22 + g 33 W 33 = 2 h 2 3 hh4) 4 3 h3) h ) h 2) h 2) + 4 ) 3 h h2) h ) h ) + 2 3 h h4) h 2 h3) h ) 2 h 2 h2) h 2) + ) h 3 h2) h ) h ) 2 3 h 2 h3) h ) + 3 h 2 h2) h 2) + 2 3 h 3 h2) h ) h ) = + 2 3 h h4) 2 3 h h4) 2 3 h 2 h3) h ) 2 3 h 2 h3) h ) + 4 3 h 2 h3) h ) 4 3 h 2 h2) h 2) + h 2 h2) h 2) + 3 h 2 h2) h 2) + 2 3 h 3 h2) h ) h ) 4 3 h 3 h2) h ) h ) + 2 3 h 3 h2) h ) h ) = 0 3.4.2 Check the divergence It must be the case that W αβ ;β = 0. This follows from an infinitesimal coordinate transformation. With ˆ δs = W αβ δg αβ gd 4 x and the diffeomorphism symmetry taking the form δg αβ = h α;β + h β;α 0

we have ˆ 0 δs = W αβ h α;β + h β;α ) gd 4 x ˆ = 2 W αβ ;β h α gd 4 x for any h α. We therefore check that where One component at a time: W αβ ;β = 0 W 00 = 2 3 hh4) 4 3 h3) h ) h 2) h 2) + 4 3 h h2) h ) h ) W = W 22 = 3 h h4) h 2 h3) h ) 2 h 2 h2) h 2) + ) h 3 h2) h ) h ) W 33 = 2 3 h 2 h3) h ) + 3 h 2 h2) h 2) + 2 3 h 3 h2) h ) h ) W 0β ;β = β W 0β + W µβ Γ 0 µβ + W 0µ Γ β µβ = 0 W 00 + 2W 0β Γ 0 0β + W 00 Γ β 0β = 0 W β ;β = β W β + W µβ Γ µβ + W µ Γ β µβ = 0 W 2β ;β = 0 W 3β ;β = β W 3β + W µβ Γ 3 µβ + W 3µ Γ β µβ = 3 W 33 + W 00 Γ 3 00 + W 33 Γ 0 30 = 3 2 3 h 2 h3) h ) + 3 h 2 h2) h 2) + 2 ) 3 h 3 h2) h ) h ) + 2 3 h 2 h4) h ) 4 3 h 3 h3) h ) h ) h 3 h2) h 2) h ) + 4 3 h 4 h2) h ) h ) h ) 2 3 h 3 h3) h ) h ) + 3 h 3 h2) h 2) h ) + 2 3 h 4 h2) h ) h ) h ) = 2 3 h 2 h4) h ) 2 3 h 2 h3) h 2) + 4 3 h 3 h3) h ) h ) + 2 3 h 2 h3) h 2) 2 3 h 3 h2) h 2) h ) + 2 3 h 3 h3) h ) h ) + 4 3 h 3 h2) h 2) h ) 2 h 4 h2) h ) h ) h 4) + 2 3 h 2 h4) h ) 4 3 h 3 h3) h ) h ) h 3 h2) h 2) h ) + 4 3 h 4 h2) h ) h ) h ) 2 3 h 3 h3) h ) h ) + 3 h 3 h2) h 2) h ) + 2 3 h 4 h2) h ) h ) h ) = 2 3 h 2 h4) h ) 2 3 h 2 h4) h ) + 2 3 h 2 h3) h 2) 2 3 h 2 h3) h 2) + 2 3 h 3 h3) h ) h ) + 4 3 h 3 h3) h ) h ) 4 3 h 3 h3) h ) h ) 2 3 h 3 h3) h ) h )

2 3 h 3 h2) h 2) h ) + 4 3 h 3 h2) h 2) h ) + 3 h 3 h2) h 2) h ) h 3 h2) h 2) h ) + 4 3 h 4 h2) h ) h ) h ) 2 h 4 h2) h ) h ) h ) + 2 3 h 4 h2) h ) h ) h ) = 0 4 Vacuum solution to the Bach equation We now solve W αβ = 0 where W 00 = 2 3 hh4) 4 3 h3) h ) h 2) h 2) + 4 3 h h2) h ) h ) W = W 22 = 3 h h4) h 2 h3) h ) 2 h 2 h2) h 2) + ) h 3 h2) h ) h ) W 33 = 2 3 h 2 h3) h ) + 3 h 2 h2) h 2) + 2 3 h 3 h2) h ) h ) First, rewrite these in terms of g h h2) using g = 3 3 h h2) ) and The first equation becomes = 3 h h3) h 2 h2) h ) ) = h h4) h 2 h3) h ) h 2 h3) h ) h 2 h2) h 2) + 2 h 3 h2) h ) h ) h h4) = g + 2 h 2 h3) h ) + h 2 h2) h 2) 2 h 3 h2) h ) h ) ) 3 h 2 h2) h ) = h 2 h3) h ) + h 2 h2) h 2) 2 h 3 h2) h ) h ) ) h 2 h3) h ) = 3 h 2 h2) h ) h 2 h2) h 2) + 2 h 3 h2) h ) h ) 0 = 2 3 h h4) 4 3 h 2 h3) h ) h 2 h2) h 2) + 4 3 h 3 h2) h ) h ) = 2 g + 2h 3 2 h3) h ) + h 2 h2) h 2) 2h ) 3 h2) h ) h ) 4 3 h 2 h3) h ) h 2 h2) h 2) + 4 3 h 3 h2) h ) h ) = 2 3 g 3 h 2 h2) h 2) = 2 3 g 3 g2 or The second pair) of equations becomes 0 = 2g g 2 0 = h h4) h 2 h3) h ) 2 h 2 h2) h 2) + h 3 h2) h ) h ) 2

= g + 2 h 2 h3) h ) h 2 h3) h ) + h 2 h2) h 2) 2 h 2 h2) h 2) + h 3 h2) h ) h ) 2 h 3 h2) h ) h ) = g + h 2 h3) h ) h 2 h2) h 2) h 3 h2) h ) h ) ) = g + h h) g 2 h 2 h2) h 2) + h 3 h2) h ) h ) ) = g + h h) g 2g 2 + h 2 gh) h ) = g + h h) g + h h2) g h 2 h) h ) g 2g 2 + h 2 gh) h ) = g + h h g g 2 and the final equation is 0 = 2 h 2 h3) h ) + h 2 h2) h 2) + 2 h 3 h2) h ) h ) = 2 3 h 2 h2) h ) ) + 2 h 2 h2) h 2) 4 h 3 h2) h ) h ) + h 2 h2) h 2) + 2 h 3 h2) h ) h ) = 2 h g h 2 h gh + 2 h 2 gh h + 3g 2 2 h 2 gh h = 2 h g h 2 h gh + 3g 2 0 = 2 h g h g 2 The three equations 0 = 2g g 2 0 = g + h h g g 2 0 = 2 h g h g 2 should be dependent; indeed, substituting the third into the second reproduces the first: 0 = g + h h g g 2 Combining the first and third, = g 2 g2 h h 0 = 2 h g h 2g = g g ln h h 0 = ln g g 0 g = ah Including the original definition of g, this gives us three equations: g = h h 3

g = 2 g2 g = ah The final two imply the first. Differentiate the third to get g = ah and substitute into the second, giving ah = 2 g2 Differentiate this and use the final again ah = gg ah = agh g = h h Therefore, it is sufficient to set h = a g, then solve the first equation, which may be integrated directly: ˆ 0 = 2g g g 2 g = g ) 2 3 g3 + b g = 3 g3 b dg = z 3 g3 b In general this gives an elliptic function. Inverting gives g z), which then gives h = a 3 g3 b. Consider the special case, b = 0. The integral for this special case is simpler, ˆ dg = z g 3/2 3 2 g = 3 z z 0 ) choosing z 0 = 0. Then we have 4 g = 3 z z 0) 2 g = 2 z 2 0 = 2 h g h g 2 = 2 24 h h z 3 44 z 4 0 = h + 3 z h dh h = 3 z dz ln h = ln z 3 h = a z 3 4

We also require 2 z 2 = h h = z3 a = 2 z 2 so we have a consistent solution. The metric for this special case is therefore 4. Singularity 2a z 5 ds 2 = 44 z 4 dt2 + dx 2 + dy 2 + dz 2 There is a coordiate singularity at the plane at z = 0. Check whether this is a curvature singularity. Compute the invariant C αβµν C αβµν Noting that the action, S = C αβµν C αβµν gd 4 x, is equavalent to S = up to a topological invariant, it is sufficient to check ˆ R αβ R αβ 3 R2 ) gd 4 x R αβ R αβ 3 R2 = h 2 h2) h 2) + h 2 h2) h 2) 4 3h 2 h2) h 2) = 2 3 g2 = 96 z 4 The singularity at z = 0 is therefore a curvature singularity. 5