Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Similar documents
FEEDBACK AMPLIFIERS. v i or v s v 0

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Prof. Paolo Colantonio a.a

55:041 Electronic Circuits

Lecture 5: Operational Amplifiers and Op Amp Circuits

55:041 Electronic Circuits

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

Feedback Principle :-

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

55:141 Advanced Circuit Techniques Two-Port Theory

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

Lesson 16: Basic Control Modes

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Physics Courseware Electronics

Why working at higher frequencies?

55:141 Advanced Circuit Techniques Two-Port Theory

Copyright 2004 by Oxford University Press, Inc.

Two Port Characterizations

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

Complex Numbers, Signals, and Circuits

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

INDUCTANCE. RC Cicuits vs LR Circuits

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

ADDITIONAL SOLVED PROBLEMS FOR TEXT

Flyback Converter in DCM

Week 11: Differential Amplifiers

( ) = ( ) + ( 0) ) ( )

Electrical Engineering Department Network Lab.

Chapter 6 Electrical Systems and Electromechanical Systems

II. PASSIVE FILTERS. H(j ω) Pass. Stop

EE C245 ME C218 Introduction to MEMS Design

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Introduction to circuit analysis. Classification of Materials

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Energy Storage Elements: Capacitors and Inductors

1.4 Small-signal models of BJT

UNIT I BASIC CIRCUIT CONCEPTS

6.01: Introduction to EECS 1 Week 6 October 15, 2009

ELE B7 Power Systems Engineering. Power Flow- Introduction

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Uncertainty in measurements of power and energy on power networks

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

Revision of intermediate electronics

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

Force = F Piston area = A

Graphical Analysis of a BJT Amplifier

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

EE 330 Fall 2016 Seating

6.01: Introduction to EECS I Lecture 7 March 15, 2011

Pulse Coded Modulation

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

V V. This calculation is repeated now for each current I.

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

Introduction to Electronic circuits.

Lecture 10: Small Signal Device Parameters

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

Fundamental loop-current method using virtual voltage sources technique for special cases

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

Physics 1202: Lecture 11 Today s Agenda

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

Electrical Circuits II (ECE233b)

ELCT 503: Semiconductors. Fall 2014

VI. Transistor Amplifiers

AGC Introduction

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

Chapter - 2. Distribution System Power Flow Analysis

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

Physics 114 Exam 2 Fall 2014 Solutions. Name:

The Decibel and its Usage

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Small signal analysis

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

#64. ΔS for Isothermal Mixing of Ideal Gases

Frequency-Domain Analysis of Transmission Line Circuits (Part 1)

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

APPENDIX A Some Linear Algebra

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

8.6 The Complex Number System

QUESTION BANK ENGINEERS ACADEMY. EE : Electrical Machines Transformers 59

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Temperature. Chapter Heat Engine

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

55:041 Electronic Circuits

Transcription:

Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler wth eedback s shown n g. below. By means o a sutable samplng network, output voltage (or) current s appled to the nput through a eedback two-port network s shown n above g. t the nput the eedback sgnal s combned wth the sgnal source through a mxer network and s ed nto the ampler. Feedback Network: Feedback network s usually a passve two-port network whch may contan resstors, capactors and nductors. Very oten t s smply a resstve conguraton. Samplng Network: There are two types o samplng networks. ) Voltage Samplng Network ) Current Samplng Network The output voltage s sampled by connectng the eedback network s shunt across the output. The output current s sampled by connectng the eedback network n seres across the output. 1

Department o Electrcal and Computer Engneerng UNIT I EII Mxng Network: The commonly used seres nput and shunt nput connectons are shown below. Ideal Sngle-Loop Feedback mpler: - Gan o the ampler β - Feedback rato X - βxo βx /Xo - Gan o the ampler wth eedback There are two types o eedbacks. ) Postve Feedback: ) Postve eedback ) Negatve eedback I the eedback sgnal X s n phase wth nput sgnal Xs, then the type o eedback s sad to be postve (or) regeneratve eedback. Thereore, or postve eedback, XXs+X XsX -X X o Xo X X X β X βx o X o 2

Department o Electrcal and Computer Engneerng UNIT I EII Xo X o Xs X X Dvdng wth X both numerator and denomnator Here X o Xs X 1 X 1 β > The product o the open loop gan and the eedback actor s called the Loop gan β. I β 1 then, Hence the gan o the ampler wth postve eedback s nnte and the ampler gves an a.c. output wthout a.c. nput sgnal. Thus the ampler acts as an oscllator. Postve eedback ncreases the nstablty o an ampler, reduces the bandwdth and ncreases the dstorton and nose. ) Negatve Feedback: I the eedback sgnal X s out o phase wth nput sgnal Xs, then the type o eedback s sad to be Negatve (or) de-generatve eedback. Thereore, or Negatve eedback, X Xs-X Xs X +X X o Xo X X X β X βx o X o Xo X o Xs X + X Dvdng wth X both numerator and denomnator X o Xs X 1+ X 1 + β Here < I β >> 1 then 1 entrely n the eedback network. β, where β s a eedback rato. The gan may be made to depend I the eedback network contans only stable passve elements, the gan o the ampler usng Negatve eedback s also stable.

Department o Electrcal and Computer Engneerng UNIT I EII General characterstcs o Negatve Feedback mplers: ) Stablty to the gan: The transer gan o the ampler s not constant as t depends on the actors such as operatng pont, temperature, e.t.c. Ths lack o stablty n amplers can be reduced by ntroducng negatve eedback. I β>>1, then 1 1+ β β β The gan s dependent only on the eedback network. I the eedback network contans only stable passve elements, the mprovement n stablty s acheved. The gan o the ampler wth negatve eedback s Derentatng wth respect to the, we get Where ( 1+ β) β 1 ( 1+ β) ( 1+ β) d d 2 2 d d d d ( 1+ β ) d d 1 1+ β d d d ( 1+ β) ( 1+ β) ( ) 1 + β ractonal change n amplcaton wth eedback. ractonal change n amplcaton wthout eedback. The ractonal change n amplcaton wth eedback dvded by the ractonal change wth out eedback s called the Senstvty. Senstvty d d 1 1 + β The recprocal o senstvty s called Desenstvty. Increase o Bandwdth: D (1+β) The product o voltage gan and bandwdth o an ampler wthout eedback and wth eedback remans the same..e.,. ( B.W ). (B.W) 1 For Negatve eedback ampler the voltage changes by the actor ; so ts bandwdth 1+ β would be ncreased by (1+β). 4

Department o Electrcal and Computer Engneerng UNIT I EII Thereore, or negatve eedback ampler the upper cut-o requency 2 s ncreased by actor (1+β) and the lower cut-o requency s decreased by (1+β). Thereore, 2 2 (1+β) 1 1 1 + β Frequency Dstorton: I the eedback network does not contan reactve elements, the overall gan s not a uncton o requency. Under such condtons requency and phase dstorton s substantally reduced. Nose and Non-Lnear dstorton: Sgnal eedback reduces the amount o nose sgnal and non-lnear dstorton. Suppose that a large ampltude sgnal s appled to a stage o an ampler so that the operaton o the devce extends slghtly beyond ts range o lnear operaton and as a consequence the output sgnal s slghtly dstorted. By ntroducng negatve eedback the nput sgnal ncreased by the same amount by whch the gan s reduced, so that the output sgnal ampltude remans the same. D Thereore, by ntroducton o negatve eedback the dstorton wll reduce to D 1 + β 1 wth the use o negatve eedback the nose reduced by a actor Problems: 1+ β 1. n ampler has an open loop gan o 800 and a eedback rato o 0.05. I the open loop gan changes by 20% due to temperature, nd the percentage change n closed loop gan. Soluton: Gven 800 Β 0.05 d d 20% 0.2?. d d 1 d β ( 1+ ) d 0.2 d 1+ 800 0.05 d 0.2 0.2 4.8 d 1+ 40 41 d d 0.48% 2. n ampler has voltage gan wth eedback s 0. I the gan wthout eedback changes by 20% and the gan wth eedback should not vary more than 2%. Determne the values o the open loop gan and eedback rato β. Soluton: Gven 800 d d 20% 0.2 2% 0.02 5

Department o Electrcal and Computer Engneerng UNIT I EII? Β? d d 1 d β 0.02 0.2 ( 1+ ) 1 ( 1+ β ) (1+β) We know that the gan wth eedback s 1 + β 0 00. 1+β β 9 β 9/00 (00) β 0.009. n ampler has mdband gan o 125 and a bandwdth o 250kHz. ) 4% negatve eedback s ntroduced, nd the new band wdth and gan. ) band wdth s restrcted to 1MHz, nd the eedback rato. Soluton: Gven 125 Bandwdth (B.W) 250 KHz β 4% 0.04 BW? ) BW (1+β) B.W. (1+125x0.04) x 0.25x 1.5 MHz ) BW 1MHz 6 Hz β? BW (1+β) B.W. 6 (1+125.β) x 25x 1+125β 00/250 4 125β β /125 0.024. 4. n ampler has a voltage gan o 400, 1 50Hz, 2 200 KHz and a dstorton o % wthout eedback. Fnd the voltage gan, 1, 2 and D when a negatve eedback s appled wth eedback rato o 0.001. Soluton: 400 6

Department o Electrcal and Computer Engneerng UNIT I EII 1 50Hz 2 200x Hz D % 0.1, β0.01 400 1+ β 1+ 400 0.001 400 285.7 1.4 1 50 1 1+ β 1.4 ( 1 β ) 2 2 + 5.71Hz D 200x x1.4 280 KHz D 0.1 0.0714 1+ 1.4 β D 7.14 % 5. n ampler has a voltage gan o 00 wth negatve eedback, the voltage gan reduced to. Calculate the racton o the output that s eedback to the nput. Soluton: Gven: 00 β? For a negatve eedback 00 1+ β 1+ 00β + 4 β 1+ β 2 β 99 β 99/ β 99/00 0.099 β 0.099 6. The gan o an ampler s decreased to 00 wth negatve eedback rom ts gan o 5000. Calculate the eedback actor and the amount o negatve eedback n db. Soluton: Gven : 5000 Β? For a negatve eedback 5000 00 1 + β 1 + 5000β 00+5x 6 β 5x 7

Department o Electrcal and Computer Engneerng UNIT I EII 1+5x β 5 5x β 4 β 4/(5x ) β 0.8x - β 0.0008 β n db 20log (0.0008) -61.982 7. n ampler wth negatve eedback gves an output o 12.5V wth an nput o 1.5V. When eedback s removed, t requres 0.25V nput or the same output. Fnd, ) Value o voltage gan wthout eedback. ) Value o β, the nput and output are n phase and β s real. Soluton: Gven: Vo 12.5V Vs 1.5V V 12.5 25 o 8. V s 1.5 V 0.25 Vo 12.5 V 12.5 o 50 V 0.25 Hence 1 + β 50 8. 1 + 50β 8.+8.x50β 50 β 41.67/(8.x50) β 0.1 β V /Vo V βxvo 1.25V Classcaton o Feedback mplers Feedback amplers can be classed on the bass o two mportant processes. 1. Samplng o output sgnal,.e., ether the output voltage s sampled (or) output current s sampled. 2. Mxng o source sgnal and eedback sgnal.e., the eedback network and the nput termnals o the basc amplers are n seres (or) n parallel. Based on the above eedback processes, the eedback amplers can be our types. 1. Voltage Seres eedback ampler. 2. Current Seres eedback ampler.. Voltage Shunt eedback ampler. 4. Current Shunt eedback ampler. 8

Department o Electrcal and Computer Engneerng UNIT I EII Eect negatve eedback upon nput and output resstances Voltage Seres Feedback mplers: block dagram o voltage-seres eedback s shown n g. below n whch a porton o the output voltage through the eedback network s appled n seres wth the nput voltage o the ampler resultng n an overall gan reducton. Ths ampler s also called as Voltage mpler. I there s no eedback, the voltage gan o the ampler s The voltage eedback actor β s gven by Vo/V β V /Vo Where V s the eedback voltage Vo s the output voltage. I a eedback sgnal V s connected n seres wth the nput then, V Vs-V V o V V o (V s -V ) V o (V s -βv o ) ( V βv o ) V o V s βv o V o + βv o V s Vo Vs 1 + β V o (1+ β) V s The voltage gan o the ampler wth eedback s gven by, Input and Output Impedances: 1 + β V o /V s Voltage Seres eedback crcut or the calculaton o nput and output resstances s shown n g. below. 9

Department o Electrcal and Computer Engneerng UNIT I EII By neglectng source resstance s The nput mpedance o the ampler wthout eedback s The nput mpedance o voltage-seres eedback ampler s, Consder V I Vs V I Vs βvo I V /I V s /I ( ) V V s V ( V βv o ) Vs β. V I ( V o V ) I Vs βv I Vs β I I + β I V s ( β ) 1+ I V s V s + I ( 1 β ) ( 1 β ) + Thereore, or voltage-seres eedback ampler, the nput mpedance s ncreased by a actor (1+β). For the measurement o output resstance, the load resstance L s dsconnected and the voltage source Vs s set to zero. Then an external voltage V s appled across the output termnals, whch delvers the current I. The output resstance o wth eedback s gven by, o V/I Wth Vs0, by applyng KVL to the nput sde V -V pplyng KVL to the output sde, we get V Io+V V Io -V (V -V )

Department o Electrcal and Computer Engneerng UNIT I EII V Io βv V+βV Io V(1+β) Io V o I 1 + β o o 1 + β (V βv) The output mpedance o the ampler wth negatve eedback or voltage-seres ampler s decreased by a actor (1+β). The shunt connecton o eedback network at the output reduces the output resstance. The seres connecton o the eedback network at the nput ncreases the nput resstance. Current Seres Feedback block dagram o current-seres eedback s shown n g. below. In ths eedback the output current Io returnng to the nput as a voltage proportonal to Io and s n seres opposton to the appled sgnal Vs. Feedback actor β V /Vo Ths type o ampler s also called Transconductance mpler. I there s no eedback, the gan o the ampler, Io/V I eedback sgnal V s connected n seres wth the nput. V Vs-V Io V Io (Vs-V ) Io (Vs-βIo) (V βio) Io(1+ β) Vs Io Vs 1 + β 1 + β Thereore, or current seres eedback the gan, 1 + β 11

Department o Electrcal and Computer Engneerng UNIT I EII Thereore, the voltage gan wth eedback, Input and Output Impedances. 1 + β Current Seres eedback crcut or the calculaton o nput and output resstances s shown n g. below. The nput mpedance o the ampler wthout eedback s V /I The nput mpedance o current-seres eedback ampler s, V s /I V Consder I Vs V ( ) I V V s V Vs βvo I ( V βv o ) Vs β. V I ( V o V ) I + β I V s ( β ) 1+ I V s V s + I ( 1 β ) ( 1 β ) + Thereore, or current-seres eedback ampler, the nput mpedance s ncreased by a actor (1+β). The output mpedance wth current-seres eedback can be determned by applyng a sgnal V to the output wth Vs shorted out, resultng n a current I, the rato o V to I beng the output mpedance. The output mpedance o wth eedback s gven by, o V/I Wth Vs0, by applyng KVL to the nput sde V -V V s 0 The current I due to the voltage V s gven by I (V/o) + V 12

Department o Electrcal and Computer Engneerng UNIT I EII I (V/o) - V I (V/o) βi I+βI V/o I(1+β) V/o V o ( 1+ β ) I o o ( 1+ β ) (V βi) For current-seres eedback the output mpedance ncreases by (1+β). Voltage Shunt Feedback mplers In ths eedback ampler a part o the output voltage s ed back n parallel wth the nput voltage through the eedback network. The eedback current I s proportonal to the output voltage Vo. block dagram o voltage-shunt eedback ampler s shown n g. below. I The eedback actor β V o Voltage-Shunt eedback ampler s called as Trasnconductance mpler. I there s no eedback the transresstance gan o the ampler Vo/V. The gan o the ampler wth eedback s, Vo/Is But, I Is-I V o V V o (I s -I ) V o (I s -βv o ) (I βv o ) V o +βv o I s V o (1+ β) I s Vo Vs 1 + β Thereore or voltage-shunt eedback ampler the gan, 1 + β 1

Department o Electrcal and Computer Engneerng UNIT I EII Input and Output Impedances Voltage-Shunt eedback crcut or the calculaton o nput and output resstances s shown n g. below. The nput mpedance o the ampler wthout eedback s V /I The nput mpedance o Voltage-Shunt eedback ampler s, V /I s V Consder ( ) I I I s I V Is I V Is βvo V Is β. I I s β I V I s V + β I I s V βv ( I V o ) β ( ) V o I + ( V I) ( 1 ) I s V + β V Is 1 + β 1 + β Thereore, or Voltage-Shunt eedback ampler, the nput mpedance s ncreased by a actor (1+β). The output mpedance wth Voltage-Shunt eedback can be determned by applyng a sgnal V to the output wth Vs shorted.e., Vs0. I Vs0, Is0 Then I +I 0 The output mpedance o wth eedback s gven by, o V/I 14

Department o Electrcal and Computer Engneerng UNIT I EII Wth Is0, I -I I -βv, pplyng KVL to the output sde, we get V Io+I V Io βv V+βV Io V(1+β) Io V o I 1 + β o o 1 + β For Voltage-Shunt eedback the output mpedance decreased by (1+β). Note: The shunt connecton o eedback network at the nput and output o ampler tends to decrease the nput and output mpedances. Current-Shunt Feedback mpler block dagram o current-shunt eedback ampler s shown n g. below. In ths eed back the output current Io returnng to the nput as a current I n parallel wth the nput current I. Feedback actor β I /Io Current-shunt eedback ampler s called as Current mpler. I there s no eedback, the gan o the ampler Io/I. The gan o the ampler wth eedback s Io/Is But I Is-I Io I Io (Is-I ) Io (Is-βIo) Io Is-βIo Io(1+ β) Is Io Is (I βio) 1 + β 1+ β Thereore or Current-shunt eedback ampler the gan, 1 + β 15

Department o Electrcal and Computer Engneerng UNIT I EII Input and Output Impedances Current-Shunt eedback crcut or the calculaton o nput and output resstances s shown n g. below. The nput mpedance o the ampler wthout eedback s V /I The nput mpedance o Voltage-Shunt eedback ampler s, V /I s V Consder I I Is I V Is I V Is β Io I s β I o V Is β I V ( I I o ) β ( V I) I s βv V I s V + βv ( 1 ) I s V + β V Is 1 + β 1 + β Thereore, or Current-Shunt eedback ampler, the nput mpedance s ncreased by a actor (1+β). The output mpedance wth Current-Shunt eedback can be determned by applyng a sgnal V to the output wth Vs shorted.e., Vs0. I Vs0, Is0 Wth I s 0, I +I 0, I -I The output mpedance o wth eedback s gven by, o V/I The current I due to the voltage V s gven by 16

Department o Electrcal and Computer Engneerng UNIT I EII I (V/o) + I I (V/o) - I (I -I ) I (V/o) βio (I βio) I+βI V/o I(1+β) V/o V o ( 1+ β ) I o o ( 1+ β ) For current-shunt eedback the output mpedance ncreases by (1+β). 8. Calculate the gan, nput mpedance, output mpedance o voltage seres eedback ampler havng 00, 1.5kΩ, o50kω and β1/12. Soluton: Gven: 00 1.5kΩ 0 50kΩ β 1/12 For a voltage-seres eedback ampler 1 + β ( 1+ β ) o o 1 + β 00 00 12 11.5 1+ 00( 1 ) 12 12 1.5 1 00( 1 + 12) o 1.5X (1+25) 1.5X x26 9kΩ 50 50 1.92kΩ 1+ 00( 1 ) 26 12 9. n ampler has a value o n 4.2kΩ, V 220 and β0.01, determne the value o nput resstance o the eedback ampler. Soluton: Gven: n 4.2kΩ V 220 β0.01 220 220 220 1 + β 68.75 1+ 220 12 1+ 2.2.2 4.2 1+ 2.2 4.2.2 1.44kΩ ( ) 17

Department o Electrcal and Computer Engneerng UNIT I EII Methodology o Feedback mpler nalyss Step 1: Identy topology. (Type o eedback). a) To nd the type o samplng network ) By shortng the output.e., Vo0, eedback sgnal (X ) becomes zero then we can say that t s Voltage Samplng. ) By openng the output loop.e., Io0, eedback sgnal (X ) becomes zero then we can say that t s Current Samplng. b) To nd the type o mxng network. Step 2: Step : Step 4: ) I the eedback sgnal s subtracted rom the nput voltage source, then we can say that t s Seres Mxng. ) I the eedback sgnal s subtracted rom the nput current source, then we can say that t s Shunt Mxng. To nd the nput crcut. ) For voltage samplng Vo0 ) For current samplng Io0 To nd the output crcut. ) For seres mxng I 0 ) For shunt mxng V 0 eplace the actve devce by ts h-parameter model at low requency. Step 5: Fnd the open loop gan (wthout eedback), o the ampler. Step 6: X Indcate X and Xo on the crcut and evaluate β X o. Step 7: From and β nd,, o. Voltage Seres Feedback mpler The example or voltage-seres eedback s the emtter ollower crcut. Step 1: ) the Vo0, X 0 hence t s voltage samplng. ) Feedback sgnal X s subtracted rom the voltage source Vs, Thereore t s seres mxng. 18

Department o Electrcal and Computer Engneerng UNIT I EII Thereore, hence the gven crcut s a voltage-seres eedback ampler. Step 2: To nd the nput crcut V o 0 Step : To nd the output crcut I 0 By combnng nput and output crcuts, we obtan the crcut as shown n gure below. Step 4: eplacng the transstor by ts h-parameter (approxmate) model, the equvalent crcut s shown n gure below. 19

Department o Electrcal and Computer Engneerng UNIT I EII Step 5: Step 6: Step 7: Open loop gan V o Vs From the crcut, Vo h e b e V β V o β 1 1 + β s + h e ( 1+ β ) o o o 1+ β ' o e ' e o 1 + β ( ) Vs s + h b e h e b e s + h b e h e e s + h e ( ) both the voltages present across e.. For the crcut shown n gure below, calculate, β,,,, o and o. Soluton: h e e s + h e 50 0 + 1.1 2.8 20

Department o Electrcal and Computer Engneerng UNIT I EII V β 1 V o 2.8 2.8 0.7 1 + β 1+ 2.8.8 s + h e + 1.1 2.1 kω ( 1+ β ). 2.1 ( 2.8) 7.098 kω o o o 1+ β ' o e ' 0 29.58 Ω o.8 Current-Seres Feedback mpler The example or current-seres eedback ampler s the common emtter ampler wth emtter resstor s unbypassed by a capactor. Step 1: ) the I o 0, eedback sgnal becomes zero, hence t s current samplng. ) Feedback sgnal X s subtracted rom the voltage source Vs, Thereore t s seres mxng. Thereore, the gven crcut s a current-seres eedback ampler. Step 2: To nd the nput crcut I o 0 21

Department o Electrcal and Computer Engneerng UNIT I EII Step : To nd the output crcut I 0 By combnng nput and output crcuts, we obtan the crcut as shown n gure below. Step 4: eplacng the transstor by ts h-parameter (approxmate) model, the equvalent crcut s shown n gure below. Step 5: Step 6: I Open loop gan o Vs From the crcut, Io h e b ( e ) Vs s + h b e + h e b ( s + h e + b e ) h e s + h e + e V β From the crcut, V I o e I o I β o e I e o 22

Department o Electrcal and Computer Engneerng UNIT I EII Step 7: 1 + β s + h e + e ( 1 β ) + o ( 1 β ) o + o v V I o o c. c Vs Vs 11. For the crcut shown n gure below, calculate, β,,,, o and o. Soluton: h e s + h e + e 50 1+ 1.1+ 1.2 ( ) 50. β e -1.2x 0.015 1 + β 1+ 0.015 1.2 0.782x - s + h e + e. Ω -0.015 ( 1 + β ).. ( 1 0.015 1.2 ) + 6.294 kω o ' 2.2k o o Ω ' o ( 1 + β ) 2.2 ( 1 0.015 1.2 ) ' o + 41.8kΩ 2

Department o Electrcal and Computer Engneerng UNIT I EII 12. n ampler wth current seres eedback has the orm shown n gure below. The transstor has h e 0, h e 2kΩ, o470ω and e conssts o two 0Ω resstors. One s by passed by capactor C e. Calculate the values o voltage gan and nput resstance wthout eedback. Soluton: Gven current-seres eedback ampler. To nd the nput crcut, I o 0 To nd the output crcut, I 0 By combnng the nput and output crcuts, we obtan the crcut as shown n gure below. 15 5.6 15kΩ 5.6kΩ 4.07kΩ 20.6 4.07kΩ 2kΩ 1.kΩ eplacng the transstor by ts h-parameter model, the equvalent crcut s shown n gure below. 24

Department o Electrcal and Computer Engneerng UNIT I EII h e 0 0 1 0.071 ( h 4.07k ) e 1. 0 1400 14 e Ω + + β e -0Ω 0.071 0.071-8.76 khz 1 + β 1 + 0.071 0 8.1 1. + 0 1.4kΩ ( 1+ β ). 1.4 ( 1 + 0.071 0) 1.4 ( 8.1) o o ' o 0Ω ' 0 8. o ( 8.1) Current-Shunt Feedback mpler 1140 The example or current-shunt eedback ampler s the two transstors n cascade connecton wth eedback rom second emtter to rst base through resstor. Step 1: ) I the Io0, eedback sgnal becomes zero, hence t s current samplng. ) Feedback sgnal X s subtracted rom the current source, Thereore t s seres mxng. Thereore, the gven crcut s a current-shunt eedback ampler. Step 2: To nd the nput crcut I o 0 25

Department o Electrcal and Computer Engneerng UNIT I EII Step : To nd the output crcut V 0 By combnng nput and output crcuts, we obtan the crcut as shown n gure below. Open loop gan, We know that b To nd 2 c 1 c 2 b 2 c 2 b 2 c 2 s c 2 b c 2 1 b 1 c b s 2 1 b1 current gan o a CE mpler h e 26

Department o Electrcal and Computer Engneerng UNIT I EII c c From the above crcut, 1 1 b 2 c + 1 2 b c 2 1 c c + 1 1 2 Where s the nput mpedance o a CE ampler wth emtter resstor s un 2 bypassed by a capactor, and s gven by ( 1 )( e ) 2 h e + + h e2 ' c We know that 1 s the current gan o a CE ampler b 1 c 1 h e b 1 c 1 h e b 1 b1 To nd s s b1 + 1 b 1 s + 1 Where s ( ' + e2 ) and h 1 e c 1 h h e c e + 1 + 2 1 Calculatng β I β I o e2 I e 2 ' + e2 I e2 I o ' e2 ( Io c e ) + 2 2 27

Department o Electrcal and Computer Engneerng UNIT I EII I Io β e2 ' + e2 e2 ' + e2 1 + β s h e o ( 1 β ) o o + ' o c 2 1 + β ' o ' o ( 1+ β ) 1. For the crcut shown n gure below, calculate, β,,,, o and o. c Soluton: 1 h h e c e + 1 + 2 1 50kΩ 1.2kΩ h ( 1 h )( e ' 2 e + e 2 ) 1.1+ 51 50kΩ+ 1.2kΩ,.55kΩ 2 ( ) 1.2k 1.25k s ' + e2 1.2k + 1.25k c 1 c + 1 2 0.457 0.58 + 1 (-50)(-0.457)(50)(0.58)406 β e ' + e 2 50k 1.2k + 50k 0.04 0.612kΩ 28

Department o Electrcal and Computer Engneerng UNIT I EII 1 + β 406 2.6 17.2 0.612k 1.1k h e 0.612k + 1.1k 0.94kΩ 0.94 k 1 + β 17.2 2 Ω o ( 1 β ) o + o ' o c 500Ω 2 ' ' o o ( 1+ β ) 500( 1+ 406 0.04) 500( 16.24 + 1) ' 18.624kΩ o Voltage-Shunt Feedback mpler The example or voltage-shunt eedback ampler s a common emtter ampler wth collector-to-base bas crcut. Step 1: ) Vo0, eedback sgnal becomes zero, V V o Vo >> V ' hence t s current samplng. V o ' 29

Department o Electrcal and Computer Engneerng UNIT I EII ) Feedback sgnal X s subtracted rom the current source, Thereore t s shunt mxng. Thereore, the gven crcut s a voltage-shunt eedback ampler. Step 2: To nd the nput crcut I o 0 Step : To nd the output crcut V 0 By combnng nput and output crcuts, we obtan the crcut as shown n gure below. Vo Open loop gan, Is From the crcut, V ( ' ) o c c Vo c Where L L ' c c L. c b. L s b s 0

Department o Electrcal and Computer Engneerng UNIT I EII We know that c current gan o a CE mpler b c b h e To nd b s : Where s ' s ' s + ' From the above crcut, s b + h e b s + h e Open loop gan,. c b. L b s h. e h L + e Calculatng β I β V o But Vo ' I 1 β I ' ' 1 + β h h e e + h e 1 + β 1

Department o Electrcal and Computer Engneerng UNIT I EII o o o 1+ β ' o c ' ' ' o o 1 + β Vo Vo v Vs Iss s 14. For the crcut shown below, determne open loop gan, β,,,, o and o. Soluton: o s ' s ' 500 s + ' + 60 1 1 β -0.02x ' 50 - h e + h L e L ' c 50 2.2 1 L 2.1 kω 50 + 2.2 52.2 8. ( 50) ( 2.1 ) 8. + 1.1 8. ( 50) ( 2.1 ) 9.4 Open loop gan ( ). 8. kω 2

Department o Electrcal and Computer Engneerng UNIT I EII 8. 5 9.4 1 + β 92.715 2.48 h e 0.971 kω 40.22 Ω 1 + β o o o 1+ β ' o L 2.1kΩ ' L o 75.8 Ω 1 + β