マスタタイトルの書式設定. Beyond ALMA. ALMA: 何がわかったか 何が足りないか LST: 何をやりたいか どのような計画か ALMA へのボーナス効果 最後に :small developments が未来を切り開く. Ryohei Kawabe (NAOJ)

Similar documents
マスタタイトルの書式設定. Large Submillimeter Telescope (LST) New 50-m class single dish telescope

galaxy science with GLAO

Distant galaxies: a future 25-m submm telescope

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

京都 ATLAS meeting 田代. Friday, June 28, 13

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Resolving the build-up of galaxies with AO

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

10x Effective area JVLA, ALMA 10x Resolution w. 50% to few km + 50% to 300km Frequency range: 1 50, GHz

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

WFMOS Studies of Galaxy Formation and Reionization. Masami Ouchi (Carnegie)

Flare-associated shock waves observed in soft X-ray

Illustrating SUSY breaking effects on various inflation models

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION)

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators

New ALMA Long Baseline Observations of the Transitional Disk around TW Hya

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

THE STAR FORMATION NEWSLETTER No February /5/29

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

What the IceCube UHE ν results tell about the origin of UHE Cosmic Rays

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

Robert Laing European Instrument Scientist

Square Kilometre Array: World s Largest Radio Telescope Design and Science drivers

すばる望遠鏡将来装置計画 WS TMT の観測装置開発. Project Overview TMT FL instruments Japanese instruments. 柏川伸成 (NAOJ/TMT project) Jan. 2011

HI Galaxy Science with SKA1. Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group

Yutaka Shikano. Visualizing a Quantum State

ALMA Science Ex am ples

CCAT-prime: CCAT-p. 01 July 2016 CCAT-p Overview 1

SKA Continuum Deep Field Surveys

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

The Square Kilometre Array and the radio/gamma-ray connection toward the SKA era

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015

Millimetre Science with the AT

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting

Radio Interferometry and ALMA

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Estimation of Gravel Size Distribution using Contact Time

Design Reference Mission for SKA1 P. Dewdney System Delta CoDR

Terahertz Science Cases for the Greenland Telescope

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

From the VLT to ALMA and to the E-ELT

What are the Big Questions and how can Radio Telescopes help answer them? Roger Blandford KIPAC Stanford

The SKA Molonglo Prototype (SKAMP) progress & first results. Anne Green University of Sydney

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Thermal Safety Software (TSS) series

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

ngvla: Galaxy Assembly through Cosmic Time

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

The new messengers from the universe The First Light of the high energy neutrino astronomy

Multiwavelength Study of Distant Galaxies. Toru Yamada (Subaru Telescope, NAOJ)

High-Redshift Galaxies: A brief summary

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Relation of machine learning and renormalization group in Ising model

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

高エネルギーニュートリノ : 理論的な理解 の現状

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

arxiv: v1 [astro-ph.ga] 16 Oct 2018

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

田村直之 (Kavli IPMU) & PFS コラボレーション PFS 進捗報告 国立天文台三鷹 2015 年 9 月 14 日. Prime Focus Instrument PFI. Cobra engineering model module

Subaru Telescope Ground Layer AO System and New Near-IR Instrument

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

ALMA deep surveys of blank fields and lensing clusters

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

SPT SMGs: High-redshift star formation under the cosmic microscope

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

CSIRO astronomy and space science (CASS) Ray Norris, CSIRO Astronomy & Space Science

Reverberation Mapping in the Era of MOS and Time-Domain Surveys: from SDSS to MSE

数理統計学から た Thermo-Majorization: 統計モデルの 較と情報スペクトル. National Institute of Informatics Keiji Matsumoto

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

=> most distant, high redshift Universe!? Consortium of international partners

Russell Stewart Deacon

XENON SHORT ARC LAMPS キセノンショートアークランプ

SUSY Model Discrimination at an Early Stage of the LHC

CO 近赤外線吸収から探る銀河中心 pc スケールでのガスの物理状態 : あかりと Spitzer による低分散分光観測

[CII] intensity mapping with CONCERTO

The ALMA contribution to the

The Future of Cosmology

MOS: A critical tool for current & future radio surveys Daniel J.B. Smith, University of Hertfordshire, UK.

April 30, 1998 What is the Expected Sensitivity of the SMA? SMA Memo #125 David Wilner ABSTRACT We estimate the SMA sensitivity at 230, 345 and 650 GH

Advanced 7 Bio-Inspired System

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota

Transcription:

マスタタイトルの書式設定 Beyond ALMA ALMA: 何がわかったか 何が足りないか LST: 何をやりたいか どのような計画か ALMA へのボーナス効果 最後に :small developments が未来を切り開く Ryohei Kawabe (NAOJ)

I: Advent of ALMA 何がわかったか 何が足りないか

ALMA opens new era ALMA will contribute to elucidating galaxy formation and planet formation with exploiting extreme performance - High Angular Resolution, ~ 0.01 arcsec; sharp radio images - High Sensitivity to reach the early universe (also thanks to very unique characteristic of submillimeter emission in SMG) Hubble Deep Field and SCUBA map Gaps in Protoplanetary Disks Hughes et al. 3 1998

Cycle-0 unveiling exciting views of the universe, but still in starting point of climbing to the top. Imagine how splendid the view is at the top! Y+ Config (max. BL) Band 10 ACA ALMA Goal: 0.01 resolution.. Band-5, 1 Bands 4 & 8 Polarization ALMA cycle-0 4

ALMA Science Goals ALMA will contribute to elucidating galaxy formation and planet formation with exploiting extreme performance Dreams - High Angular come true! Resolution, ~ 0.01 arcsec; sharp radio images - High Sensitivity to reach the early universe (also thanks to very unique characteristic of submillimeter emission in SMG) Hubble Deep Field and SCUBA map Gaps in Protoplanetary Disks 5

[OIII] detection at z=7.21! Inoue, Tamura+2016

Line-Emitter/redshift Search :ALMA is not so powerful? ASPECS: ALMA SPECtroscopiC Survey in HDF (PI:F. Walter) To unveil cosmic gas density evolution etc. preliminary results with ~ 20 hours - B-3: 10 emitter cand. - B-6: 11 candidates => one/ hour Walter+2016

Dust gaps unveiled in disks :gas/pol imagings are still challenging? Dust Gaps in Class-II source TW-Hya (d=54 pc) Dust filtration due to a formed planet? - dust-β and pol. imaging constraints on grain size - gas gap image needed for planet mass estimate 37 au gap 22 au gap B4+B6 Continuum Image Tsukagosi, Nomura, Muto + 16 Cyc-4 observations - 0.14 polarimetry ~ 6 hours PI: Muto Kataoka+ 15, 17-0.1 (~5.4 au) & 0.2 km/s 13 CO & C 18 O imaging (requested ~8 hours) Central hole PI: Nomura Kanagawa+ 15 x 2-3 resolution needs x ~10 more in time

Needs More for ALMA? Sensitivity, especially in spectral line & Polarimetry Spatial Resolution, especially in continuum Spectral/Frequency Coverage for e.g., spec-z Field of View Time-domain Science? How can be improved in the future plans?

Synergy among ALMA, ngvla, and SKA Cosmic Star Formation, Co-Evolution of Galaxies and SMBH, Large Scale Structure ALMA: Challenges to z~10 EoR with [CII], [OIII], dust etc. ngvla: Challenges to z>5 with CO ladders SKA: Challenges to large scale structure at z> 10 and star formation beyond z>5 Special Note: multi-wavelength astronomy!

ngvla is only array to detect CO at z=5?

ngvla is only array to detect CO at z=5? NGC6240/Mrk231 CO(8-7) CO(7-6) CI ALMA B4+B5 ALMA still powerful!

Inevitable Barriers for Large Arrays Brightness Temperature Barrier Spatial Resolution Barrier Freq. coverage Barrier ALMA can go deeper and finer in the cool (thermal) universe Not easy for ALMA to overcome wide-field & wide freq coverage, time-domain problems

10000000 Brightness Temperature Sensitivity (R-J) : 1000000 continuum case (0.01 beam/fixed hours assumed) 10000 1000 100 10 1 SKA 100000 10000 1000 100 10 ngvla ALMA b6 b7 Beam Size : 1 K sensitivity assumed ALMA B6/7 1 1 is at the best 0.1 1 10 100 1000 0.1 100 mas 0.01 10 mas 0.1 1 10 100 1000 Freq. (GHz) 0.001

M82 (10 Msun/yr) x 5 at z= 10 (EoR) ngvla=5-10 x JVLA 20 hours ALMA 20 hours 5σ ~ 34 ujy Line 5σ Continuum 5σ 1 µjy 10 cm 1 cm λ obs 1mm

Needs More for ALMA? Sensitivity, especially in spectral line & Polarimetry Spatial Resolution, especially in continuum Spectral/Frequency Coverage for e.g., spec-z Field of View Time-domain Science? How can be improved in the future plans? Band-1 and -3 sensitivity can be improved by ngvla

Needs More for ALMA? Sensitivity, especially in spectral line & Polarimetry Spatial Resolution, especially in continuum Spectral/Frequency Coverage for e.g., spec-z Field of View Time-domain Science? How can be improved in the future plans? Band-1 and -3 sensitivity can be improved by ngvla LST can develop new discovery space complementary to ALMA

II: LST 何をやりたいか, どのような計画か, ALMA へのボーナス効果

New Challenges in 2030- Unveiling EoR & formation of first star, Galaxies, SMBH through the cosmic time Time-domain Science - GRB, Magneters, Pulsars - FRB, GW-counter parts - Flares from stars, Extreme Physics in the Universe - Resolving BH shadow - CMB B-mode

New Challenges in 2030- Unveiling EoR & formation of first star, Galaxies, SMBH through the cosmic time Time-domain Science - GRB, Magneters, Pulsars - FRB, GW-counter parts - Flares from stars, Planet Formation & Life in Space Extreme Physics in the Universe - Resolving BH shadow - CMB B-mode LST

Basic Concept :Tentative Specifications Large Aperture: Diameter = ~ 50 m less confusion, confident counterpart ID, high sensitivity for line emitter search and point-like sources & transients such as GRB: Large FOV : F.O.V = 30 arcmin. diameter, Goal = 1.0 deg cosmological deep and wide-field survey & high cadence Main Frequency Range = 70 420 GHz well fit to Atm windows & Major Science Case covers up to ~ THz with the limited use of surface to maximize synergy with ALMA total surface rms 45 μm (El = 30-80 deg) with Active surface Control Possible site; ALMA site

Key Science of LST Exploration of Cosmic Star Formation History and Large Scale Structures via two kinds of surveys - Multi-band Deep Continuum Survey over ~10 3 deg 2 - Blind CO/CII line emitter search (Tomography) up to z~ 8, EoR, using imaging spectrograph (Blind vs multi-target spectroscopy still needs to be investigated, but blind can provide us with census of non-biased line emitters, in which strong-line but continuum-weak emitters will be included) Time-domain science via high cadence performance Covers wide range: SZ cosmology, VLBI, chemistry RK+ in SPIE proceedings; White paper by Kohno, RK in prep

CO/[CII] Tomography Evolution of Galaxies EoR Epoch of Reionization.,, / / /. /, /., RSD Redshift Space Distortion. / /., / LSS Cosmic Large-Scale Structure /,,. /, CSFH Cosmic Star-formation History /.. /..,.,,.... and serendipitous discoveries, Yoichi Tamura / Large Aperture Sub/mm Single Dish Telescopes in the ALMA Era

CO/CII vs HI Tomography 10000 hrs SKA 1 surveys (SKA 1: 10% of full SKA) 1000 hrs LST+ super-deshima (300 pix) survey Deep 2 deg 2 70-400 4-15 ~ 100,000? (7~9) Y.Tamura+ in prep. GHz >1,000 (z>6)

SKA HI Blue: Medium wide Green: Med. deep Red: Deep LST CO/[CII] EoR

Why LST/sDESHIMA so powerful? s-deshima 370 GHz [CII] 70 GHz

Time-Domain Science Case GRB Orphan Afterglow (Totani+2002) GRB Reverse Shock at extremly high-z (Inoue+2007) - Absorption detection in GRB environments & intervening gas? LST can contribute to quick location determination & WB spectroscopy at same time Inoue+2007 LST z=20 GRB

Simulation of GRB afterglow z = 30 GRB afterglow (1-12hr, 300GHz) 5 arcmin Movie is available on the LST web site LST 50m 1.0 Flux density (mjy/b) 0.0 0.1 ALMA (mosaic) ALMA FoV (Band 7) CCAT 25m ASTE 10m Swift/BAT error circle Yoichi Tamura / Large Aperture Sub/mm Single Dish Telescopes in the ALMA Era

LST covers wide range of Science Develop new discovery space complementary to ALMA Wide-Field Spectroscopic Imaging Time-domain Science

LST Sky Coverage El > 25 deg LST ~ 4 arcsec. ~ 60 µk RJ Planck 3.5 arcmin.

LST Sky Coverage shared with SUBARU, TMT, JVLA/ngVLA LST ~ 4 arcsec Planck 3.5 arcmin. ~ 60 µk RJ

LST Galactic Plane Survey Wide Survey 1.1 mm with 1 deg FOV, 2 mjy/b 30 shallower than confusion limit 10^4 deg^2 870 hours Deep 1.1 mm with 1 deg FOV, 0.7 mjy/b x10 shallower than confusion limit 10^3 deg^2 870 hours Contamination expected - 10^6 bight SMGs - > 1000 lensed SMGs

Technical Feasibility Study Science Requirement & Technical Specification Operation condition & Operation Planning Optics Design Conceptual Design of Telescope Structure Surface Accuracy Budget Analysis (Very Preliminary) Cost Estimate AO application or Millimeter-wave AO (MAO) under discussion

Optical Design for wide FOV very preliminary Richey-Chretien Optics for D= 50 m main reflector Lyot-Stop at Sub-refrector: D effective ~ 46.7 m FOV ~ 0.7 deg. in diameter at 850 micron achievable But - large mirrors D sub-ref ~ 6.2 m #3 mirror ~ 7 m diameter - huge RX cabin needed (big impact on telescope mechanical structure?) - No aperture plane @main reflector Takekoshi, Oshima + in prep.

Conceptual Design Double Sector Gears Receiver Cabin Tertiary & Forth Mirrors Collimator Tower The First Drawing of LST Conceptual Design; Major req. accommodated. Elevator Image Courtesy of Mitsubishi Electric Company

Conceptual Design Top View #3, & #4 mirrors limit the minimal size of receiver cabin.. Back View Image Courtesy of Mitsubishi Electric Company

Active Surface Control Required 45 µm rms needs careful mech/thermal design as well ~ 2m x 1m 2 m

Tentative Surface Error Budget for LST & comparison with IRAM 30m Telescope Error budgets for Gravity and Thermal Deformation can be smaller Wind-Load is current headache, some correction etc. needed RK+ in SPIE proceedings; White paper by RK, Kohno, in prep

Key Instruments Ultra-Wideband Medium-Resolution Imaging Spectrometer Array: Blind CO/[CII] Tomography Freq= 70-420 GHz & N pix of > 300 (~ 1000) Multi-Chroic Wide-Field Camera covering 2, 1.1, 0.85 mm, (+0.45, 0.35 mm) Multiple-band Heterodyne Array Receivers (~ 100 beams) + Ultra-wideband Spectrometers (for line survey) => Super DESHIMA <= or Super MOSAIC Mm/submm multi-object spectrograph MOSAIC Delft SRON High-Z Mapper

Combined Array: ALMA+LST 1 ~ 40% increase in correcting area 2 ~ keeping F.O.V. area with multiple beam or x2 increase only for 12m-LST correlat. 1+2 => > x2 increase in observing speed - F.O.V. 12m-LST ~ sqrt(p 12m )*sqrt(p LST )

International Collaboration? Discussion via workshops - LSTWS2015: Large millimeter/submillimeter telescope in the ALMA era - Status of Other Telescopes updated e.g., Caltech ~ 30m survey telescope Recent Progress - European perspective: ~ 40m class similar to LST : A good-sign toward a future 40-50 m class submm single disk telescope in Chile as a single international project, although it will be hard to project and secure construction budget

III: 最後に Small is beautiful! Small developmentsの積み上げが将来を切り開く (+ALMAを使い倒す)

Examples of Small developments New Detector Technologies - TES Camera/Multiple- chroic TES - DESHIMA/DESHIMA 49 - Tsukuba-cam, Super-resolution Imaging by Sparse Model. - Application to ALMA Data Millimeter-wave Adaptive Optics (MAO)

Super-resolution Imaging Conventional Imaging: CLEAN, λ/d limit Super-resolution by Sparse Modeling Applications to ALMA underway - continuum imaging - pol. Imaging - Spectral line imaging - selfcal, mfs etc Honma+2014 Akiyama+2017 See Poster by M. Yamaguchi

Original data: 0.51 x 0.43 Sparse Modeling: ALMA HD142527 Image by Sparse Modeling x 2-3 higher resolution Super-res w. small CB Comparison Consistent! High-res. data: 0.18 x 013

Millimeter-wave Adaptive Optics PI: Y. Tamura

まとめ ALMA は本当に powerful ALMA は将来を映す鏡 : ALMA で観測を進めると 将来何が必要かがだんだん見えて来る LST は ALMA を補佐しつつ新たな地平を目指す ( 中型 ) 計画 サイエンス 装置技術の検討を進めて行きたい Small projects (+ アイデアを試すことも ) are essential for our future.