Advanced Microeconomics II. Lijun Pan Nagoya University

Similar documents
Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

Relation between Fourier Series and Transform

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Midterm. Answer Key. 1. Give a short explanation of the following terms.

1 Finite Automata and Regular Expressions

The Procedure Abstraction Part II: Symbol Tables and Activation Records

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Lecture 21 : Graphene Bandstructure

T h e C S E T I P r o j e c t

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Revisiting what you have learned in Advanced Mathematical Analysis

Advanced Queueing Theory. M/G/1 Queueing Systems

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

Equations and Boundary Value Problems

Jonathan Turner Exam 2-10/28/03

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

CSE 245: Computer Aided Circuit Simulation and Verification

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Jonathan Turner Exam 2-12/4/03

Combinatorial Optimization

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

NEW FLOODWAY (CLOMR) TE TE PIN: GREENS OF ROCK HILL, LLC DB: 12209, PG: ' S67 46'18"E APPROX. FLOODWAY NEW BASE FLOOD (CLOMR)

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Lecture 4: Laplace Transforms

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

A L A BA M A L A W R E V IE W

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Global alignment in linear space

Right Angle Trigonometry

Final Exam : Solutions

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2]

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

3.4 Repeated Roots; Reduction of Order

CS September 2018

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing

Tangram Fractions Overview: Students will analyze standard and nonstandard

Chapter 3. The Fourier Series

3+<6,&6([DP. September 29, SID (last 5 digits): --

P a g e 3 6 of R e p o r t P B 4 / 0 9

COMP108 Algorithmic Foundations

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve

( ) ( ) + = ( ) + ( )

cycle that does not cross any edges (including its own), then it has at least

Integral Calculus What is integral calculus?

Poisson process Markov process

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Consider a system of 2 simultaneous first order linear equations

Microscopic Flow Characteristics Time Headway - Distribution

INF5820 MT 26 OCT 2012

Republic of tlre Ph?lippines OEPARTMENT OF EDUCATION

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

Junction Tree Algorithm 1. David Barber

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

ADDENDUM. The following addendum becomes a part of the above referenced bid. All other terms and conditions remain in effect, unchanged.

P a g e 5 1 of R e p o r t P B 4 / 0 9

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Chapter 5 Transient Analysis

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Systems of First Order Linear Differential Equations

Elementary Differential Equations and Boundary Value Problems

4. Which of the following organs develops first?

Executive Committee and Officers ( )

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

EEE 303: Signals and Linear Systems

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: Volume: 5 Issue:

Math 266, Practice Midterm Exam 2

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

AP Calculus BC AP Exam Problems Chapters 1 3

Ch 1.2: Solutions of Some Differential Equations

Mathematics Paper- II

Shortest Path With Negative Weights

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

CS 688 Pattern Recognition. Linear Models for Classification

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

Institute of Actuaries of India

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Phonics Bingo Ladders

The transition:transversion rate ratio vs. the T-ratio.

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Inventory Management Model with Quadratic Demand, Variable Holding Cost with Salvage value

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

Problem Set 7: Monopoly and Game Theory

Transcription:

Advnd Miroonomis II Lijun Pn Ngoy Univrsiy

Dynmi Gms of Compl Informion Exnsiv-Form Rprsnion Subgm-prf Ns quilibrium

Clssifiion of Gms Si Gms Simulnous Mov Gms Gms wr plyrs oos ions simulnously. Su s prisonrs dilmm nd sl-bid uions. Plyrs mus niip srgy of ir opponn. Dynmi Gms Squnil Mov Gms Gms wr plyrs oos ions in priulr squn. Su s ss nd brgining. Plyrs mus look d in ordr o know w ion o oos now. 3

Si Gms Simulnous Mov Gms norml-form or srgi-form rprsnion: Plyrs Srgis Mum Prisonr Confss Prisonr Mum Confss - - -9 0 0-9 -6-6 Pyoffs 4

Dynmi Gms Squnil Mov Gms Exnsiv-Form Rprsnion Plyr H T Plyr Plyr H T H T - - - - 5

Exnsiv-Form Rprsnion Ss of plyrs: i= n nd psudo-plyr T ordr of movs Aion s Informion s Pyoff funions Probbiliy disribuion of psudoplyr s ion. Prfrn 6

Gm Tr An inumbn monopolis fs possibiliy of nry by llngr. T llngr my oos o nr or sy ou. If llngr nrs inumbn n oos ir o ommod or o fig. T pyoffs r ommon knowldg. Cllngr In Inumbn A F 0 0 Ou T firs numbr is pyoff of llngr. T sond numbr is pyoff of inumbn. 7

A gm r s s of nods nd s of dgs su dg onns wo nods s wo nods r sid o b djn for ny pir of nods r is uniqu p onns s wo nods Gm Tr p from x 0 o x 4 n dg onning nods x nd x 5 x 0 x x x 3 x 4 x 5 x 6 x 7 x 8 nod 8

Gm Tr A p is squn of disin nods y y y 3... y n- y n su y i nd y i+ r djn for i=... n-. W sy is p is from y o yn. W n lso us squn of dgs indud by s nods o dno p. T lng of p is numbr of dgs onind in p. Exmpl : x 0 x x 3 x 7 is p of lng 3. Exmpl : x 4 x x 0 x x 6 is p of lng 4 p from x 0 x 0 o x 4 L M x x U P U P x 3 x 4 x 5 x 6 S T x 7 x 8 9

Gm Tr Tr is spil nod x 0 lld roo of r wi is bginning of gm. T nods djn o x 0 r sussors of x 0. T sussors of x 0 r x x For ny wo djn nods nod is onnd o roo by longr p is sussor of or nod. Exmpl 3: x 7 is sussor of x 3 bus y r djn nd p from x 7 o x 0 is longr n p from x 3 o x 0 x 0 x x x 3 x 4 x 5 x 6 x 7 x 8 0

Gm Tr If nod x is sussor of nor nod y n y is lld prdssor of x. In gm r ny nod or n roo s uniqu prdssor. Any nod s no sussor is lld rminl nod wi is possibl nd of gm Exmpl 4: x4 x5 x6 x7 x8 r rminl nods x 0 x x x 3 x 4 x 5 x 6 x 7 x 8

Gm Tr Any nod or n rminl nod rprsns som plyr. For nod or n rminl nod dgs onn i wi is sussors rprsn ions vilbl o plyr rprsnd by nod Plyr H T Plyr H T Plyr H T - - - -

Gm Tr A p from roo o rminl nod rprsns ompl squn of movs wi drmins pyoff rminl nod Plyr H H Plyr T Plyr T H T - - - 3

Dynmi gms of ompl nd prf Prf informion informion All prvious movs r obsrvd bfor nx mov is osn. A plyr knows Wo s md W ois wn s s n opporuniy o mk oi 4

Dynmi gms of ompl nd imprf Imprf informion informion A plyr my no know xly Wo s md W ois wn s s n opporuniy o mk oi. Exmpl: plyr mks r oi fr plyr dos. Plyr nds o mk r dision wiou knowing w plyr s md. 5

Imprf informion: illusrion E of wo plyrs s pnny. Plyr firs ooss wr o sow Hd or Til. Tn plyr ooss o sow Hd or Til wiou knowing plyr s oi Bo plyrs know following ruls: If wo pnnis m bo ds or bo ils n plyr wins plyr s pnny. Orwis plyr wins plyr s pnny. Plyr H T Plyr H T H T - - - - 6

Informion s An informion s for plyr is ollion of nods sisfying: plyr s mov vry nod in informion s nd wn ply of gm rs nod in informion s plyr wi mov dos no know wi nod in informion s s or s no bn rd. All nods in n informion s blong o sm plyr T plyr mus v sm s of fsibl ions nod in informion s. 7

Informion s: illusrion Plyr L R wo informion ss for plyr onining singl nod Plyr Plyr 3 L R 3 3 L R 3 L R L R L R L R 3 0 3 0 n informion s for plyr 3 onining r nods n informion s for plyr 3 onining singl nod 8

Informion s: illusrion All nods in n informion s blong o sm plyr Plyr C D Tis is no orr informion s Plyr Plyr 3 E F G H 3 3 0 0 3 9

Informion s: illusrion T plyr mus v sm s of fsibl ions nod in informion s. Plyr C D An informion s nno onins s wo nods Plyr Plyr E F G K H 3 0 0 3 0

Rprsn si gm s gm r: illusrion Prisonrs dilmm T firs numbr is pyoff for plyr nd sond numbr is pyoff for plyr Prisonr Mum Fink Prisonr Prisonr Mum Fink Mum Fink 4 4 5 0 0 5

Prf informion nd imprf informion A dynmi gm in wi vry informion s onins xly on nod is lld gm of prf informion. A dynmi gm in wi som informion ss onin mor n on nod is lld gm of imprf informion.

Ns quilibrium in dynmi gm W n lso us norml-form o rprsn dynmi gm T s of Ns quilibri in dynmi gm of ompl informion is s of Ns quilibri of is norml-form How o find Ns quilibri in dynmi gm of ompl informion Consru norml-form of dynmi gm of ompl informion Find Ns quilibri in norml-form 3

Enry gm Plyr s srgis In Ou Plyr s srgis In Ou Pyoffs Norml-form rprsnion Plyr In Ou Plyr In -3-3 0 Ou 0 0 0 4

Enry gm Plyr Plyr In Ou In Ou In Ou Plyr -3-3 0 0 0 0 In { In In }{ In Ou }{ Ou In }{ Ou Ou } -3-3 -3-3 0 0 Plyr Ou 0 0 0 0 0 0 5

Enry gm Tr pur srgy NE: in { Ou In } in { Ou Ou } Ou { In In } 6

Enry gm Plyr In Plyr Ou Tr pur srgy NE: in { Ou In } in { Ou Ou } Ou { In In } In Ou In Ou Plyr -3-3 0 0 0 0 In { In In }{ In Ou }{ Ou In }{ Ou Ou } -3-3 -3-3 0 0 Plyr Ou 0 0 0 0 0 0 7

Enry gm Ou { In In } is no rdibl; in { Ou Ou } is no rdibl; in { Ou In } is rdibl. ully in { Ou In } is uniqu subgm prf Ns quilibrium. 8

Rmov nonrsonbl Ns quilibrium Subgm prf Ns quilibrium is rfinmn of Ns quilibrium I n rul ou nonrsonbl Ns quilibri or nonrdibl rs W firs nd o dfin subgm 9

Subgm of dynmi gm of ompl nd prf informion A subgm of gm r bgins nonrminl nod nd inluds ll nods nd dgs following non-rminl nod Plyr H Plyr T Plyr H T H T - - - - subgm 30

Subgm: xmpl Plyr Plyr C Plyr E F Plyr G H 3 D 0 E Plyr G H 0 0 Plyr F 3 0 0 G H 0 0 3

Subgm of dynmi gm of ompl nd imprf informion bgins singlon informion s n informion s onins singl nod nd inluds ll nods nd dgs following singlon informion s nd dos no u ny informion s; is if nod of n informion s blongs o is subgm n ll nods of informion s lso blong o subgm. 3

Subgm: illusrion I E subgm 0 0 B A subgm - R D No subgm R D R D -0.5-0.5 -K -K -K -K -K -K 33

Subgm-prf Ns quilibrium A Ns quilibrium of dynmi gm is subgmprf if srgis of Ns quilibrium onsiu or indu Ns quilibrium in vry subgm of gm. Subgm-prf Ns quilibrium is Ns quilibrium. 34

Enry gm Plyr In Plyr Ou Tr pur srgy NE: in { Ou In } in { Ou Ou } Ou { In In } In Ou In Ou Plyr -3-3 0 0 0 0 In { In In }{ In Ou }{ Ou In }{ OuOu } -3-3 -3-3 0 0 Plyr Ou 0 0 0 0 0 0 35

Enry gm Ou { In In } is no subgm prf; in { Ou Ou } is no subgm prf; in { Ou In } is subgm prf. ully in { Ou In } is uniqu subgm prf Ns quilibrium. 36

Find subgm prf Ns quilibri: bkwrd induion Plyr C Plyr E Plyr G H F 3 D 0 0 0 Subgm prf Ns quilibrium DG E Plyr plys D nd plys G if plyr plys E Plyr plys E if plyr plys C 37

Exisn of subgm-prf Ns quilibrium Evry fini dynmi gm of ompl nd prf informion s subgm-prf Ns quilibrium n b found by bkwrd induion. 38

Bkwrd induion: illusrion Plyr C D Plyr Plyr E F G H 3 0 0 3 Subgm-prf Ns quilibrium C EH. plyr plys C; plyr plys E if plyr plys C plys H if plyr plys D. 39

Mulipl subgm-prf Ns quilibri: illusrion Plyr C D E Plyr Plyr Plyr F G H I J K 0 0 3 Subgm-prf Ns quilibrium D FHK. plyr plys D plyr plys F if plyr plys C plys H if plyr plys D plys K if plyr plys E. 40

Mulipl subgm-prf Ns quilibri Plyr C D E Plyr Plyr Plyr F G H I J K 0 0 3 Subgm-prf Ns quilibrium E FHK. plyr plys E; plyr plys F if plyr plys C plys H if plyr plys D plys K if plyr plys E. 4

Mulipl subgm-prf Ns quilibri Plyr C D E Plyr Plyr Plyr F G H I J K 0 0 3 Subgm-prf Ns quilibrium D FIK. plyr plys D; plyr plys F if plyr plys C plys I if plyr plys D plys K if plyr plys E. 4

Squnil brgining Plyr nd r brgining ovr on dollr. T iming is s follows: A bginning of firs priod plyr proposs o k sr s of dollr lving -s o plyr. Plyr ir ps offr or rjs offr in wi s ply oninus o sond priod A bginning of sond priod plyr proposs plyr k sr s of dollr lving -s o plyr. Plyr ir ps offr or rjs offr in wi s ply oninus o ird priod A bginning of ird priod plyr rivs sr s of dollr lving -s for plyr wr 0<s <. T plyrs r impin. Ty disoun pyoff by f wr 0< < 43

Squnil brgining Priod Plyr Plyr propos n offr s -s s p -s rj Priod Plyr propos n offr s -s Plyr s -s p rj Priod 3 s -s 44

Solv squnil brgining by bkwrd induion Priod : Plyr ps s if nd only if s s. W ssum plyr will p n offr if indiffrn bwn ping nd rjing Plyr fs following wo opions: offrs s = s o plyr lving -s = -s for rslf is priod or offrs s < s o plyr plyr will rj i nd rivs -s nx priod. Is disound vlu is -s Sin -s<-s plyr sould propos n offr s * -s * wr s * = s. Plyr will p i. 45

Squnil brgining Priod Priod Plyr propos n offr s -s Plyr s p -s rj s - s Plyr propos n offr s -s Plyr s -s p rj Priod 3 s -s 46

Solv squnil brgining by bkwrd induion Priod : Plyr ps -s if nd only if -s -s *= - s or s --s * wr s * = s. Plyr fs following wo opions: offrs -s = -s *=- s o plyr lving s = --s *=-+s for rslf is priod or offrs -s < -s * o plyr plyr will rj i nd rivs s * = s nx priod. Is disound vlu is s Sin s < -+s plyr sould propos n offr s * -s * wr s * = -+s 47

Sklbrg modl of duopoly A omognous produ is produd by only wo firms: firm nd firm. T quniis r dnod by q nd q rspivly. T iming of is gm is s follows: Firm ooss quniy q 0. Firm obsrvs q nd n ooss quniy q 0. T mrk prid is PQ= Q wr is onsn numbr nd Q=q +q. T os o firm i of produing quniy q i is C i q i =q i. Pyoff funions: u q q =q q +q u q q =q q +q 48

Sklbrg modl of duopoly Find subgm-prf Ns quilibrium by bkwrd induion W firs solv firm s problm for ny q 0 o g firm s bs rspons o q. T is w firs solv ll subgms bginning firm. Tn w solv firm s problm. T is solv subgm bginning firm 49

Sklbrg modl of duopoly Solv firm s problm for ny q 0 o g firm s bs rspons o q. Mx u q q =q q +q subj o 0 q + FOC: q q = 0 Firm s bs rspons R q = q / if q = 0 if q > 50

Sklbrg modl of duopoly Solv firm s problm. No firm n lso solv firm s problm. T is firm knows firm s bs rspons o ny q. Hn firm s problm is Mx u q R q =q q +R q subj o 0 q + T is Mx u q R q =q q / subj o 0 q + FOC: q / = 0 q = / 5

Sklbrg modl of duopoly Subgm-prf Ns quilibrium / R q wr R q = q / if q = 0 if q > T is firm ooss quniy / firm ooss quniy R q if firm ooss quniy q. T bkwrd induion ouom is / /4. Firm ooss quniy / firm ooss quniy /4. 5

Sklbrg modl of duopoly Firm produs q = / nd is profi q q + q = /8 Firm produs q = /4 nd is profi q q + q = /6 T ggrg quniy is 3 /4. 53

Courno modl of duopoly Firm produs q = /3 nd is profi q q + q = /9 Firm produs q = /3 nd is profi q q + q = /9 T ggrg quniy is /3. 54

Monopoly Suppos only on firm monopoly produs produ. T monopoly solvs following problm o drmin quniy q m. Mx q m q m subj o 0 q m + FOC: q m = 0 q m = / Monopoly produs q m = / nd is profi q m q m = /4 55

Squnil-mov Brrnd modl of duopoly diffrnid produs Two firms: firm nd firm. E firm ooss pri for is produ. T pris r dnod by p nd p rspivly. T iming of is gm s follows. Firm ooss pri p 0. Firm obsrvs p nd n ooss pri p 0. T quniy onsumrs dmnd from firm : q p p = p + bp. T quniy onsumrs dmnd from firm : q p p = p + bp. T os o firm i of produing quniy q i is C i q i =q i. 56

Squnil-mov Brrnd modl of duopoly diffrnid produs Solv firm s problm for ny p 0 o g firm s bs rspons o p. Mx u p p = p + bp p subj o 0 p + FOC: + p + bp = 0 p = + + bp / Firm s bs rspons R p = + + bp / 57

Squnil-mov Brrnd modl of duopoly diffrnid produs Solv firm s problm. No firm n lso solv firm s problm. Firm knows firm s bs rspons o p. Hn firm s problm is Mx u p R p = p + br p p subj o 0 p + T is Mx u p R p = p + b + + bp / p subj o 0 p + FOC: p + b + + bp /+ +b / p = 0 p = ++b+b b // b 58

Squnil-mov Brrnd modl of duopoly diffrnid produs Subgm-prf Ns quilibrium ++b+b b // b R p wr R p = + + bp / Firm ooss pri ++b+b b // b firm ooss pri R p if firm ooss pri p. 59

Exmpl: muully ssurd dsruion Two suprpowrs nd v nggd in provoiv inidn. T iming is s follows. T gm srs wi suprpowr s oi ir ignor inidn I rsuling in pyoffs 0 0 or o sl siuion E. Following slion by suprpowr suprpowr n bk down B using i o los f nd rsul in pyoffs - or i n oos o prod o n omi onfronion siuion A. Upon is oi wo suprpowrs ply following simulnous mov gm. Ty n ir rr R or oos o doomsdy D in wi world is dsroyd. If bo oos o rr n y suffr smll loss nd pyoffs r -0.5-0.5. If ir ooss doomsdy n world is dsroyd nd pyoffs r -K -K wr K is vry lrg numbr. 60

Exmpl: muully ssurd dsruion I E 0 0 B A - R D R D R D -0.5-0.5 -K -K -K -K -K -K 6

Find subgm prf Ns quilibri: bkwrd induion I E subgm 0 0 B A subgm Sring wi os smlls subgms Tn mov bkwrd unil roo is rd - R D On subgmprf Ns quilibrium IR AR R D -0.5-0.5 -K -K R D -K -K -K -K 6

Find subgm prf Ns quilibri: bkwrd induion I E subgm 0 0 B A subgm Sring wi os smlls subgms Tn mov bkwrd unil roo is rd - R D Anor subgmprf Ns quilibrium ED BD R D -0.5-0.5 -K -K R D -K -K -K -K 63

Bnk runs Two invsors nd v dposid D wi bnk. T bnk s invsd s dposis in long-rm proj. If bnk liquids is invsmn bfor proj murs ol of r n b rovrd wr D > r > D/. If bnk s invsmn murs proj will py ou ol of R wr R>D. Two ds wi invsors n mk widrwls from bnk. 64

Bnk runs: iming of gm T iming of is gm is s follows D bfor bnk s invsmn murs Two invsors ply simulnous mov gm If bo mk widrwls n rivs r nd gm nds If only on mks widrwl n s rivs D or rivs r-d nd gm nds If nir mks widrwl n proj murs nd gm oninus o D. D fr bnk s invsmn murs Two invsors ply simulnous mov gm If bo mk widrwls n rivs R nd gm nds If only on mks widrwl n s rivs R-D or rivs D nd gm nds If nir mks widrwl n bnk rurns R o invsor nd gm nds. 65

Bnk runs: gm r W NW W: widrw NW: no widrw W NW W NW D r r D r D r D D subgm W NW D On subgm-prf Ns quilibrium NW W NW W W NW W NW R R R D D D R D R R 66

Bnk runs: gm r W NW W: widrw NW: no widrw W NW W NW D r r D r D r D D subgm W NW D On subgm-prf Ns quilibrium W W W W W NW W NW R R R D D D R D R R 67

Triffs nd imprf inrnionl ompiion Two idnil ounris nd simulnously oos ir riff rs dnod rspivly. Firm from ounry nd firm from ounry produ omognous produ for bo om onsumpion nd xpor. Afr obsrving riff rs osn by wo ounris firm nd simulnously ooss quniis for om onsumpion nd for xpor dnod by nd rspivly. Mrk pri in wo ounris P i Q i = Q i for i=. Q = + Q = +. Bo firms v onsn mrginl os. E firm pys riff on xpor o or ounry. 68

69 Triffs nd imprf inrnionl ompiion Firm 's pyoff is is profi: ] [ ] [ Firm 's pyoff is is profi: ] [ ] [

70 Triffs nd imprf inrnionl ompiion Counry 's pyoff is is ol wlfr: sum of onsumrs' surplus njoyd by onsumrs of ounry firm 's profi nd riff rvnu Q W wr Q. Counry 's pyoff is is ol wlfr: sum of onsumrs' surplus njoyd by onsumrs of ounry firm 's profi nd riff rvnu Q W wr Q.

7 Bkwrd induion: subgm bwn wo firms Hr w will find Ns quilibrium of subgm bwn wo firms for ny givn pir of. Firm mximizs ] [ ] [ FOC: 0 0 Firm mximizs ] [ ] [ FOC: 0 0

7 Bkwrd induion: subgm bwn wo firms Hr w will find Ns quilibrium of subgm bwn wo firms for ny givn pir of. Givn Ns quilibrium * * * * of subgm sould sisfy s quions. Solving s quions givs us 3 3 3 3 * * * *

73 Bkwrd induion: wol gm Bo ounris know wo firms' bs rspons for ny pir Counry mximizs Q Q W Plugging w w go ino ounry 's objiv funion 3 3 3 3 3 3 3 3 3 3 8 FOC: 3 By symmry w lso g 3

74 Triffs nd imprf inrnionl ompiion T subgm-prf Ns quilibrium 3 3 3 3 3 3 * * T subgm-prf ouom 9 9 4 9 9 4 3 3 * * * * * *