LECTURE PRESENTATIONS

Similar documents
Chapter 10 Photosynthesis

Chapter 10. Photosynthesis

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

CH 8: Photosynthesis Overview Photosynthesis is the process that converts solar energy into chemical energy

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

LECTURE PRESENTATIONS

BIOLOGY. Photosynthesis CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

Photosynthesis. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis CAMPBELL BIOLOGY IN FOCUS SECOND EDITION URRY CAIN WASSERMAN MINORSKY REECE

Chapter 10: PHOTOSYNTHESIS

BIOLOGY. Photosynthesis. The Process That Feeds the Biosphere. Autotrophs sustain themselves without eating anything derived from other organisms

Photosynthesis (Outline)

Photosynthesis CAMPBELL BIOLOGY IN FOCUS SECOND EDITION URRY CAIN WASSERMAN MINORSKY REECE

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic

Photosynthesis. Chapter 10. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

LECTURE PRESENTATIONS

BIOLOGY. Photosynthetic Processes CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Photosynthesis CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Photosynthesis CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

Photosynthesis. Chapter 10. Biology. Edited by Shawn Lester. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Chapter 8 PHOTOSYNTHESIS Chapter # Chapter Title PowerPoint Image Slideshow

Where does most of our society s energy come from (think of fossil fuels), how does that energy become fixed for human use?

Photosynthesis (Outline)

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

10/2/2011. Outline. The Process That Feeds the Biosphere. Autotrophs. Photosynthetic Organisms

BIOLOGY 4/19/2015. Photosynthesis. Outline. Autotrophs. The Process That Feeds the Biosphere. Photosynthetic Organisms

Life on Earth is solar powered. Photosynthesis => conversion of light energy to chemical energy (stored in sugars and other organic molecules).

AP Biology. Chloroplasts: sites of photosynthesis in plants

Photosynthesis. 3. We have 2 types of organisms depending on their nutrition:

The light reactions convert solar energy to the chemical energy of ATP and NADPH

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

Sunday, August 25, 2013 PHOTOSYNTHESIS

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata

Photosynthesis. *Calvin cycle. (c) Unicellular protist. (e) Pruple sulfur bacteria. (d) Cyanobacteria. (b) Multicellular algae

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

AP Biology Day 21. Friday, October 7, 2016

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Lecture 9: Photosynthesis

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Photosynthesis: Using Light to Make Food

Photosynthesis: Using Light to Make Food

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast

NOTES: CH 10, part 3 Calvin Cycle (10.3) & Alternative Mechanisms of C-Fixation (10.4)

Photosynthesis: Using Light to Make Food

AP Biology Day 22. Monday, October 10, 2016

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

THE BASICS OF PHOTOSYNTHESIS

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

Photosynthesis Overview

Chapter 10. Photosynthesis

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:

Chapter 10. Photosynthesis

Chapter 7. Photosynthesis: Using Light to Make Food. Lectures by Edward J. Zalisko

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc.

photosynthesis autotrophic organisms photoautotrophs photoautotrophs chapter 14

Chapter 10 Photosynthesis

Chapter 7. Photosynthesis: Using Light to Make Food. Lecture by Richard L. Myers

Chapter 10. Photosynthesis. Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

CHAPTER 8 PHOTOSYNTHESIS

PHOTOSYNTHESIS: converts light energy to the chemical energy of food 6CO 2 + 6H 2 O + light energy C 6 H 12 O 6 + 6O 2

Chapter 10. Photosynthesis

Photosynthesis Life Is Solar Powered!

Chapter 7 AN OVERVIEW OF PHOTOSYNTHESIS. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B.

Photosynthesis in Nature

Photosynthesis. Chapter 8

Photosynthesis. Chapter 10. Photosynthesis and Energy. Photosynthesis and Energy. Photosynthesis. Making food from light energy.

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis

AN OVERVIEW OF PHOTOSYNTHESIS

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere

Just Like the Guy From Krypton Photosynthesis

Photosynthesis (Chapter 7 Outline) A. For life based on organic compounds, two questions can be raised:

PHOTOSYNTHESIS CHAPTER 7. Where It Starts - Photosynthesis

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis. Nearly all of the usable energy on this planet came, at one time or another, from the sun by the process of photosynthesis

Lecture Series 13 Photosynthesis: Energy from the Sun

Metabolism 2 Photosynthesis

Name AP Biology Photosynthesis Notes Mrs. Laux Photosynthesis: Capturing Energy I. Chloroplasts A. Facts: 1. double membrane 2.

PHOTOSYNTHESIS. Botany Department B.N.D. College

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

Chapter 8 Photosynthesis Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Vital metabolism for survival of life in the earth. Prof Adinpunya Mitra Agricultural & Food Engineering Department

PHOTOSYNTHESIS. Chapter 10

Chapter 6. Capturing Solar Energy: Photosynthesis. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Section A2: The Pathways of Photosynthesis

Chapter 10 Photosynthesis. Photosynthesis

Bio 111 Study Guide Chapter 10 Photosynthesis

Where It Starts - Photosynthesis

Outline - Photosynthesis

Biology: Life on Earth

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Transcription:

LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 10 Photosynthesis Lectures by Erin Barley Kathleen Fitzpatrick 2011 Pearson Education, Inc.

Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost the entire living world 2011 Pearson Education, Inc.

Autotrophs sustain themselves without eating anything derived from other organisms Autotrophs are the producers of the biosphere, producing organic molecules from CO2 and other inorganic molecules Almost all plants are photoautotrophs, using the energy of sunlight to make organic molecules 2011 Pearson Education, Inc.

Figure 10.1

Photosynthesis occurs in plants, algae, certain other protists, and some prokaryotes These organisms feed not only themselves but also most of the living world 2011 Pearson Education, Inc.

BioFlix: Photosynthesis 2011 Pearson Education, Inc.

Figure 10.2 (b) Multicellular alga (a) Plants (d) Cyanobacteria (c) Unicellular protists 10 µm (e) Purple sulfur 1 µm bacteria 40 µm

Figure 10.2a (a) Plants

Figure 10.2b (b) Multicellular alga

Figure 10.2c (c) Unicellular protists 10 µm

Figure 10.2d (d) Cyanobacteria 40 µm

Figure 10.2e (e) Purple sulfur bacteria 1 µm

Heterotrophs obtain their organic material from other organisms Heterotrophs are the consumers of the biosphere Almost all heterotrophs, including humans, depend on photoautotrophs for food and O2 2011 Pearson Education, Inc.

The Earth s supply of fossil fuels was formed from the remains of organisms that died hundreds of millions of years ago In a sense, fossil fuels represent stores of solar energy from the distant past 2011 Pearson Education, Inc.

Figure 10.3

Concept 10.1: Photosynthesis converts light energy to the chemical energy of food Chloroplasts are structurally similar to and likely evolved from photosynthetic bacteria The structural organization of these cells allows for the chemical reactions of photosynthesis 2011 Pearson Education, Inc.

Chloroplasts: The Sites of Photosynthesis in Plants Leaves are the major locations of photosynthesis Their green color is from chlorophyll, the green pigment within chloroplasts Chloroplasts are found mainly in cells of the mesophyll, the interior tissue of the leaf Each mesophyll cell contains 30 40 chloroplasts 2011 Pearson Education, Inc.

CO2 enters and O2 exits the leaf through microscopic pores called stomata The chlorophyll is in the membranes of thylakoids (connected sacs in the chloroplast); thylakoids may be stacked in columns called grana Chloroplasts also contain stroma, a dense interior fluid 2011 Pearson Education, Inc.

Figure 10.4 Leaf cross section Chloroplasts Vein Mesophyll Stomata Chloroplast Thylakoid Stroma Granum Thylakoid space 1 µm CO2 O2 Mesophyll cell Outer membrane Intermembrane space Inner membrane 20 µm

Figure 10.4a Leaf cross section Chloroplasts Vein Mesophyll Stomata Chloroplast CO2 O2 Mesophyll cell 20 µm

Figure 10.4b Chloroplast Thylakoid Stroma Granum Thylakoid space 1 µm Outer membrane Intermembrane space Inner membrane

Figure 10.4c Mesophyll cell 20 µm

Figure 10.4d Stroma Granum 1 µm

Tracking Atoms Through Photosynthesis: Scientific Inquiry Photosynthesis is a complex series of reactions that can be summarized as the following equation: 6 CO2 + 12 H2O + Light energy C6H12O6 + 6 O2 + 6 H2O 2011 Pearson Education, Inc.

The Splitting of Water Chloroplasts split H2O into hydrogen and oxygen, incorporating the electrons of hydrogen into sugar molecules and releasing oxygen as a by-product 2011 Pearson Education, Inc.

Figure 10.5 Reactants: Products: 6 CO2 C6H12O6 12 H2O 6 H2O 6 O2

Photosynthesis as a Redox Process Photosynthesis reverses the direction of electron flow compared to respiration Photosynthesis is a redox process in which H2O is oxidized and CO2 is reduced Photosynthesis is an endergonic process; the energy boost is provided by light 2011 Pearson Education, Inc.

Figure 10.UN01 becomes reduced Energy + 6 CO2 + 6 H2O C6 H12 O6 + 6 O2 becomes oxidized

The Two Stages of Photosynthesis: A Preview Photosynthesis consists of the light reactions (the photo part) and Calvin cycle (the synthesis part) The light reactions (in the thylakoids) Split H2O Release O2 Reduce NADP+ to NADPH Generate ATP from ADP by photophosphorylation 2011 Pearson Education, Inc.

The Calvin cycle (in the stroma) forms sugar from CO2, using ATP and NADPH The Calvin cycle begins with carbon fixation, incorporating CO2 into organic molecules 2011 Pearson Education, Inc.

Figure 10.6-1 H2O Light NADP+ ADP +Pi Light Reactions Chloroplast

Figure 10.6-2 H2O Light NADP+ ADP +Pi Light Reactions ATP NADPH Chloroplast O2

Figure 10.6-3 CO2 H2O Light NADP+ ADP +Pi Light Reactions ATP NADPH Chloroplast O2 Calvin Cycle

Figure 10.6-4 CO2 H2O Light NADP+ ADP +Pi Light Reactions Calvin Cycle ATP NADPH Chloroplast O2 [CH2O] (sugar)

Concept 10.2: The light reactions convert solar energy to the chemical energy of ATP and NADPH Chloroplasts are solar-powered chemical factories Their thylakoids transform light energy into the chemical energy of ATP and NADPH 2011 Pearson Education, Inc.

The Nature of Sunlight Light is a form of electromagnetic energy, also called electromagnetic radiation Like other electromagnetic energy, light travels in rhythmic waves Wavelength is the distance between crests of waves Wavelength determines the type of electromagnetic energy 2011 Pearson Education, Inc.

The electromagnetic spectrum is the entire range of electromagnetic energy, or radiation Visible light consists of wavelengths (including those that drive photosynthesis) that produce colors we can see Light also behaves as though it consists of discrete particles, called photons 2011 Pearson Education, Inc.

Figure 10.7 10 5 nm 10 3 nm 10 nm 1 nm Gamma X-rays rays 3 UV 1m (109 nm) 106 nm Infrared Microwaves 103 m Radio waves Visible light 380 450 500 Shorter wavelength Higher energy 550 600 650 700 750 nm Longer wavelength Lower energy

Photosynthetic Pigments: The Light Receptors Pigments are substances that absorb visible light Different pigments absorb different wavelengths Wavelengths that are not absorbed are reflected or transmitted Leaves appear green because chlorophyll reflects and transmits green light 2011 Pearson Education, Inc.

Animation: Light and Pigments Right-click slide / select Play 2011 Pearson Education, Inc.

Figure 10.8 Light Reflected light Chloroplast Absorbed light Granum Transmitted light

A spectrophotometer measures a pigment s ability to absorb various wavelengths This machine sends light through pigments and measures the fraction of light transmitted at each wavelength 2011 Pearson Education, Inc.

Figure 10.9 TECHNIQUE Refracting Chlorophyll Photoelectric solution tube White prism Galvanometer light Slit moves to pass light of selected wavelength. Green light High transmittance (low absorption): Chlorophyll absorbs very little green light. Blue light Low transmittance (high absorption): Chlorophyll absorbs most blue light.

An absorption spectrum is a graph plotting a pigment s light absorption versus wavelength The absorption spectrum of chlorophyll a suggests that violet-blue and red light work best for photosynthesis An action spectrum profiles the relative effectiveness of different wavelengths of radiation in driving a process 2011 Pearson Education, Inc.

(a) Absorption spectra (b) Action spectrum Absorption of light by chloroplast pigments RESULTS Rate of photosynthesis (measured by O2 release) Figure 10.10 Chlorophyll a Chlorophyll b Carotenoids 400 500 600 Wavelength of light (nm) 400 500 600 700 700 Aerobic bacteria Filament of alga (c) Engelmann s experiment 400 500 600 700

The action spectrum of photosynthesis was first demonstrated in 1883 by Theodor W. Engelmann In his experiment, he exposed different segments of a filamentous alga to different wavelengths Areas receiving wavelengths favorable to photosynthesis produced excess O2 He used the growth of aerobic bacteria clustered along the alga as a measure of O2 production 2011 Pearson Education, Inc.

Chlorophyll a is the main photosynthetic pigment Accessory pigments, such as chlorophyll b, broaden the spectrum used for photosynthesis Accessory pigments called carotenoids absorb excessive light that would damage chlorophyll 2011 Pearson Education, Inc.

Figure 10.11 CH3 CH3 in chlorophyll a CHO in chlorophyll b Porphyrin ring Hydrocarbon tail (H atoms not shown)

Excitation of Chlorophyll by Light When a pigment absorbs light, it goes from a ground state to an excited state, which is unstable When excited electrons fall back to the ground state, photons are given off, an afterglow called fluorescence If illuminated, an isolated solution of chlorophyll will fluoresce, giving off light and heat 2011 Pearson Education, Inc.

Figure 10.12 Energy of electron e Excited state Heat Photon (fluorescence) Photon Chlorophyll molecule Ground state (a) Excitation of isolated chlorophyll molecule (b) Fluorescence

Figure 10.12a (b) Fluorescence

A Photosystem: A Reaction-Center Complex Associated with Light-Harvesting Complexes A photosystem consists of a reaction-center complex (a type of protein complex) surrounded by light-harvesting complexes The light-harvesting complexes (pigment molecules bound to proteins) transfer the energy of photons to the reaction center 2011 Pearson Education, Inc.

Figure 10.13 Lightharvesting complexes Thylakoid membrane Photon Reactioncenter complex e Transfer of energy STROMA Primary electron acceptor Pigment Special pair of molecules chlorophyll a molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) (a) How a photosystem harvests light Thylakoid membrane Photosystem Chlorophyll Protein subunits (b) Structure of photosystem II STROMA THYLAKOID SPACE

Figure 10.13a Lightharvesting complexes Thylakoid membrane Photon Photosystem Reactioncenter complex STROMA Primary electron acceptor e Transfer of energy Pigment Special pair of molecules chlorophyll a molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) (a) How a photosystem harvests light

Thylakoid membrane Figure 10.13b Chlorophyll Protein subunits (b) Structure of photosystem II STROMA THYLAKOID SPACE

A primary electron acceptor in the reaction center accepts excited electrons and is reduced as a result Solar-powered transfer of an electron from a chlorophyll a molecule to the primary electron acceptor is the first step of the light reactions 2011 Pearson Education, Inc.

There are two types of photosystems in the thylakoid membrane Photosystem II (PS II) functions first (the numbers reflect order of discovery) and is best at absorbing a wavelength of 680 nm The reaction-center chlorophyll a of PS II is called P680 2011 Pearson Education, Inc.

Photosystem I (PS I) is best at absorbing a wavelength of 700 nm The reaction-center chlorophyll a of PS I is called P700 2011 Pearson Education, Inc.

Linear Electron Flow During the light reactions, there are two possible routes for electron flow: cyclic and linear Linear electron flow, the primary pathway, involves both photosystems and produces ATP and NADPH using light energy 2011 Pearson Education, Inc.

A photon hits a pigment and its energy is passed among pigment molecules until it excites P680 An excited electron from P680 is transferred to the primary electron acceptor (we now call it P680+) 2011 Pearson Education, Inc.

Figure 10.14-1 Primary acceptor e 2 P680 1 Light Pigment molecules Photosystem II (PS II)

P680+ is a very strong oxidizing agent H2O is split by enzymes, and the electrons are transferred from the hydrogen atoms to P680+, thus reducing it to P680 O2 is released as a by-product of this reaction 2011 Pearson Education, Inc.

Figure 10.14-2 Primary acceptor 2 H+ + 1 /2 O2 H2O e 2 3 e e P680 1 Light Pigment molecules Photosystem II (PS II)

Each electron falls down an electron transport chain from the primary electron acceptor of PS II to PS I Energy released by the fall drives the creation of a proton gradient across the thylakoid membrane Diffusion of H+ (protons) across the membrane drives ATP synthesis 2011 Pearson Education, Inc.

Figure 10.14-3 Ele c Primary acceptor 2 H+ + 1 /2 O2 H2O e 2 Pq tron 4 tran spo r t ch ain Cytochrome complex 3 Pc e e 5 P680 1 Light ATP Pigment molecules Photosystem II (PS II)

In PS I (like PS II), transferred light energy excites P700, which loses an electron to an electron acceptor P700+ (P700 that is missing an electron) accepts an electron passed down from PS II via the electron transport chain 2011 Pearson Education, Inc.

Figure 10.14-4 Ele c Primary acceptor 2H + 1 /2 O2 + H2O e 2 Pq tron 4 tran spo r Primary acceptor t ch ain e Cytochrome complex 3 Pc e e P700 5 P680 Light 1 Light 6 ATP Pigment molecules Photosystem II (PS II) Photosystem I (PS I)

Each electron falls down an electron transport chain from the primary electron acceptor of PS I to the protein ferredoxin (Fd) The electrons are then transferred to NADP+ and reduce it to NADPH The electrons of NADPH are available for the reactions of the Calvin cycle This process also removes an H+ from the stroma 2011 Pearson Education, Inc.

Figure 10.14-5 Ele c Primary acceptor 2H + 1 /2 O2 + H2O e 2 Pq tron 4 tran spo r Primary acceptor t ch ain e Cytochrome complex E tra lect ch ns ron ai po n rt 7 Fd e e 8 NADP+ reductase 3 Pc e e P700 5 P680 Light 1 Light 6 ATP Pigment molecules Photosystem II (PS II) Photosystem I (PS I) NADP+ + H+ NADPH

Figure 10.15 e e e e Mill makes ATP e n Photo e NADPH Photo n e ATP Photosystem II Photosystem I

Cyclic Electron Flow Cyclic electron flow uses only photosystem I and produces ATP, but not NADPH No oxygen is released Cyclic electron flow generates surplus ATP, satisfying the higher demand in the Calvin cycle 2011 Pearson Education, Inc.

Figure 10.16 Primary acceptor Primary acceptor Fd Fd Pq NADP+ reductase Cytochrome complex NADPH Pc Photosystem I Photosystem II ATP NADP+ + H+

Some organisms such as purple sulfur bacteria have PS I but not PS II Cyclic electron flow is thought to have evolved before linear electron flow Cyclic electron flow may protect cells from light-induced damage 2011 Pearson Education, Inc.

A Comparison of Chemiosmosis in Chloroplasts and Mitochondria Chloroplasts and mitochondria generate ATP by chemiosmosis, but use different sources of energy Mitochondria transfer chemical energy from food to ATP; chloroplasts transform light energy into the chemical energy of ATP Spatial organization of chemiosmosis differs between chloroplasts and mitochondria but also shows similarities 2011 Pearson Education, Inc.

In mitochondria, protons are pumped to the intermembrane space and drive ATP synthesis as they diffuse back into the mitochondrial matrix In chloroplasts, protons are pumped into the thylakoid space and drive ATP synthesis as they diffuse back into the stroma 2011 Pearson Education, Inc.

Figure 10.17 Chloroplast Mitochondrion CHLOROPLAST STRUCTURE MITOCHONDRION STRUCTURE H+ Intermembrane space Inner membrane Matrix Diffusion Electron transport chain Thylakoid membrane ATP synthase Stroma ADP + P i Key Higher [H ] Lower [H+ ] + Thylakoid space H + ATP

ATP and NADPH are produced on the side facing the stroma, where the Calvin cycle takes place In summary, light reactions generate ATP and increase the potential energy of electrons by moving them from H2O to NADPH 2011 Pearson Education, Inc.

Figure 10.18 STROMA (low H+ concentration) Photosystem II Light 4 H+ Cytochrome complex Photosystem I Light NADP+ reductase 3 Fd Pq H2O NADPH Pc 2 1 THYLAKOID SPACE (high H+ concentration) /2 O2 +2 H+ NADP+ + H+ 1 4 H+ To Calvin Cycle Thylakoid membrane STROMA (low H+ concentration) ATP synthase ADP + Pi ATP H+

Concept 10.3: The Calvin cycle uses the chemical energy of ATP and NADPH to reduce CO2 to sugar The Calvin cycle, like the citric acid cycle, regenerates its starting material after molecules enter and leave the cycle The cycle builds sugar from smaller molecules by using ATP and the reducing power of electrons carried by NADPH 2011 Pearson Education, Inc.

Carbon enters the cycle as CO2 and leaves as a sugar named glyceraldehyde 3-phospate (G3P) For net synthesis of 1 G3P, the cycle must take place three times, fixing 3 molecules of CO2 The Calvin cycle has three phases Carbon fixation (catalyzed by rubisco) Reduction Regeneration of the CO2 acceptor (RuBP) 2011 Pearson Education, Inc.

Figure 10.19-1 Input (Entering one 3 CO2 at a time) Phase 1: Carbon fixation Rubisco 3 P Short-lived intermediate P 3P Ribulose bisphosphate (RuBP) P 6 P 3-Phosphoglycerate

Figure 10.19-2 Input (Entering one 3 CO2 at a time) Phase 1: Carbon fixation Rubisco 3 P Short-lived intermediate P 6 P 3-Phosphoglycerate P 3P Ribulose bisphosphate (RuBP) 6 ATP 6 ADP Calvin Cycle 6 P P 1,3-Bisphosphoglycerate 6 NADPH 6 NADP+ 6 Pi 6 P Glyceraldehyde 3-phosphate (G3P) 1 P G3P (a sugar) Output Glucose and other organic compounds Phase 2: Reduction

Figure 10.19-3 Input (Entering one 3 CO2 at a time) Phase 1: Carbon fixation Rubisco 3 P Short-lived intermediate P 6 P 3-Phosphoglycerate P 3P Ribulose bisphosphate (RuBP) 6 ATP 6 ADP 3 ADP 3 Calvin Cycle 6 P P 1,3-Bisphosphoglycerate ATP Phase 3: Regeneration of the CO2 acceptor (RuBP) 6 NADPH 6 NADP+ 6 Pi P 5 G3P 6 P Glyceraldehyde 3-phosphate (G3P) 1 P G3P (a sugar) Output Glucose and other organic compounds Phase 2: Reduction

Concept 10.4: Alternative mechanisms of carbon fixation have evolved in hot, arid climates Dehydration is a problem for plants, sometimes requiring trade-offs with other metabolic processes, especially photosynthesis On hot, dry days, plants close stomata, which conserves H2O but also limits photosynthesis The closing of stomata reduces access to CO2 and causes O2 to build up These conditions favor an apparently wasteful process called photorespiration 2011 Pearson Education, Inc.

Photorespiration: An Evolutionary Relic? In most plants (C3 plants), initial fixation of CO2, via rubisco, forms a three-carbon compound (3phosphoglycerate) In photorespiration, rubisco adds O2 instead of CO2 in the Calvin cycle, producing a two-carbon compound Photorespiration consumes O2 and organic fuel and releases CO2 without producing ATP or sugar 2011 Pearson Education, Inc.

Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the atmosphere had far less O2 and more CO2 Photorespiration limits damaging products of light reactions that build up in the absence of the Calvin cycle In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle 2011 Pearson Education, Inc.

C4 Plants C4 plants minimize the cost of photorespiration by incorporating CO2 into four-carbon compounds in mesophyll cells This step requires the enzyme PEP carboxylase PEP carboxylase has a higher affinity for CO2 than rubisco does; it can fix CO2 even when CO2 concentrations are low These four-carbon compounds are exported to bundle-sheath cells, where they release CO2 that is then used in the Calvin cycle 2011 Pearson Education, Inc.

Figure 10.20 The C4 pathway C4 leaf anatomy Mesophyll cell PEP carboxylase Mesophyll cell Photosynthetic cells of C4 Bundlesheath plant leaf cell Oxaloacetate (4C) Vein (vascular tissue) PEP (3C) ADP Malate (4C) Stoma Bundlesheath cell CO2 ATP Pyruvate (3C) CO2 Calvin Cycle Sugar Vascular tissue

Figure 10.20a C4 leaf anatomy Photosynthetic cells of C4 plant leaf Mesophyll cell Bundlesheath cell Vein (vascular tissue) Stoma

Figure 10.20b The C4 pathway Mesophyll cell PEP carboxylase Oxaloacetate (4C) PEP (3C) ADP Malate (4C) Bundlesheath cell CO2 ATP Pyruvate (3C) CO2 Calvin Cycle Sugar Vascular tissue

In the last 150 years since the Industrial Revolution, CO2 levels have risen greatly Increasing levels of CO2 may affect C3 and C4 plants differently, perhaps changing the relative abundance of these species The effects of such changes are unpredictable and a cause for concern 2011 Pearson Education, Inc.

CAM Plants Some plants, including succulents, use crassulacean acid metabolism (CAM) to fix carbon CAM plants open their stomata at night, incorporating CO2 into organic acids Stomata close during the day, and CO2 is released from organic acids and used in the Calvin cycle 2011 Pearson Education, Inc.

Figure 10.21 Sugarcane Pineapple C4 Mesophyll Organic acid cell CAM CO2 1 CO2 incorporated Organic acid (carbon fixation) Calvin Cycle Night CO2 CO2 Bundlesheath cell CO2 2 CO2 released to the Calvin cycle Sugar (a) Spatial separation of steps Calvin Cycle Day Sugar (b) Temporal separation of steps

Figure 10.21a Sugarcane

Figure 10.21b Pineapple

The Importance of Photosynthesis: A Review The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells Plants store excess sugar as starch in structures such as roots, tubers, seeds, and fruits In addition to food production, photosynthesis produces the O2 in our atmosphere 2011 Pearson Education, Inc.

Figure 10.22 H2O CO2 Light NADP+ ADP + Pi Light Reactions: Photosystem II Electron transport chain Photosystem I Electron transport chain RuBP 3-Phosphoglycerate Calvin Cycle ATP NADPH G3P Starch (storage) Chloroplast O2 Sucrose (export)

Figure 10.UN02 El Primary acceptor H2O O2 El ec tr on ch tr ai an n sp or Pq t Primary acceptor Pc Photosystem II ro n ch tr ai an n sp or Fd t NADP+ reductase Cytochrome complex ATP ec t Photosystem I NADP+ + H+ NADPH

Figure 10.UN03 3 CO2 Carbon fixation 3 5C 6 3C Calvin Cycle Regeneration of CO2 acceptor 5 3C Reduction 1 G3P (3C)

Figure 10.UN04 ph 4 ph 7 ph 4 ph 8 ATP

Figure 10.UN05

Figure 10.UN06

Figure 10.UN07

Figure 10.UN08