Engineering Mechanics Dynamics & Vibrations. Engineering Mechanics Dynamics & Vibrations Plane Motion of a Rigid Body: Equations of Motion

Similar documents
Mechanical Vibrations

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Mechanical Vibrations. Seventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

EN40: Dynamics and Vibrations. Final Examination Friday May : 2pm-5pm

DETERMINATION OF NATURAL FREQUENCY AND DAMPING RATIO

EN40: Dynamics and Vibrations. Final Examination Friday May : 2pm-5pm

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

Course Outline. 2. Motion of systems that can be idealized as particles

ME203 Section 4.1 Forced Vibration Response of Linear System Nov 4, 2002 (1) kx c x& m mg

The state space model needs 5 parameters, so it is not as convenient to use in this control study.

Homework 6: Forced Vibrations Due Friday April 6, 2018

RAYLEIGH'S METHOD Revision D

BALANCING OF RECIPROCATING MASSES

J 10 J W W W W

2C09 Design for seismic and climate changes

CHAPTER 8 SYSTEMS OF PARTICLES

Conversion Factors. Dynamic Measurements. Displacement, Velocity, Acceleration Relationships. Acceleration. Pressure. Sinusoids (only for sinusoids)

Classical Mechanics Qualifying Exam Solutions Problem 1.

Flight and Orbital Mechanics. Exams

Supplementary Information

EXPERIMENT OF SIMPLE VIBRATION

LC Oscillations. di Q. Kirchoff s loop rule /27/2018 1

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

SOLID MECHANICS TUTORIAL BALANCING OF RECIPROCATING MACHINERY

+ve 10 N. Note we must be careful about writing If mass is not constant: dt dt dt

Systems of Particles: Angular Momentum and Work Energy Principle

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

Exercise 8 CRITICAL SPEEDS OF THE ROTATING SHAFT

CHECKLIST. r r. Newton s Second Law. natural frequency ω o (rad.s -1 ) (Eq ) a03/p1/waves/waves doc 9:19 AM 29/03/05 1

(4 pts.) (4 pts.) (4 pts.) b) y(x,t) = 1/(ax 2 +b) This function has no time dependence, so cannot be a wave.

NURTURE COURSE TARGET : JEE (MAIN) Test Type : ALL INDIA OPEN TEST TEST DATE : ANSWER KEY HINT SHEET. 1. Ans.

Simple Harmonic Motion

Balancing. Rotating Components Examples of rotating components in a mechanism or a machine. (a)

04 - LAWS OF MOTION Page 1 ( Answers at the end of all questions )

Paper-II Chapter- Damped vibration

Application 10.5D Spherical Harmonic Waves

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body!

Dynamic Response of Second Order Mechanical Systems with Viscous Dissipation forces

Studying Interaction of Cotton-Raw Material with Working Bodies of Cotton-Cleaning Machines

PHYS 321 Solutions to Practice Final (December 2002).

EF 151 Exam #4, Fall, 2010 Page 1 of 5

CPT 17. XI-LJ (Date: ) PHYSICS CHEMISTRY MATHEMATICS 1. (B) 31. (A) 61. (A) 2. (B) 32. (B) 62. (C) 3. (D) 33. (D) 63. (B) 4. (B) 34.

FREE VIBRATIONS OF SIMPLY SUPPORTED BEAMS USING FOURIER SERIES


fiziks Forum for CSIR-UGC JRF/NET, GATE, IIT-JAM, GRE in PHYSICAL SCIENCES

The driven Rayleigh-van der Pol oscillator

Stopping oscillations of a simple harmonic oscillator using an impulse force

PHY 181 Test 2 Practice Solutions Spring 2013

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES

Chapter 2. Asymptotic Notation

Transfer Function Analysis

Numerical Methods in Fourier Series Applications

Dynamics of Structures 5th Edition Chopra SOLUTIONS MANUAL

Vibratory Motion. Prof. Zheng-yi Feng NCHU SWC. National CHung Hsing University, Department of Soil and Water Conservation

Lecture 20 - Wave Propagation Response

Emergency Takeoff Charts for Fighter Aircraft

School of Mechanical Engineering Purdue University. ME375 Transfer Functions - 1

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

VTU EDUSAT PROGRAMME-17. DYNAMICS OF MACHINES Subject Code -10 ME 54 BALANCING OF RECIPROCATING MASSES ADARSHA H G

Damped Vibration of a Non-prismatic Beam with a Rotational Spring

X. Perturbation Theory

Definition of Work, The basics

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

( ) = ( ) + ( ), One Degree of Freedom, Harmonically Excited Vibrations. 1 Forced Harmonic Vibration. t dies out with time under each of.

Basics of Dynamics. Amit Prashant. Indian Institute of Technology Gandhinagar. Short Course on. Geotechnical Aspects of Earthquake Engineering

BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revision S

The Non-homogeneous Diffusion Equation

The Mathematical Model and the Simulation Modelling Algoritm of the Multitiered Mechanical System

PARTIAL DIFFERENTIAL EQUATIONS SEPARATION OF VARIABLES

2D DSP Basics: Systems Stability, 2D Sampling

Lesson 03 Heat Equation with Different BCs

PART I: MULTIPLE CHOICE (60 POINTS) A m/s B m/s C m/s D m/s E. The car doesn t make it to the top.

Wavelet Transform Theory. Prof. Mark Fowler Department of Electrical Engineering State University of New York at Binghamton

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. v 1 = 4 km/hr = 1.

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Free Surface Hydrodynamics

Vasyl Moisyshyn*, Bogdan Borysevych*, Oleg Vytyaz*, Yuriy Gavryliv*

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

Microscopic traffic flow modeling

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS

Castiel, Supernatural, Season 6, Episode 18

1. Hydrogen Atom: 3p State

: Transforms and Partial Differential Equations

x 1 2 (v 0 v)t x v 0 t 1 2 at 2 Mechanics total distance total time Average speed CONSTANT ACCELERATION Maximum height y max v = 0

Orthogonal Functions

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

Lecture 7: Polar representation of complex numbers

Today. Homework 4 due (usual box) Center of Mass Momentum

REVIEW OF CALCULUS Herman J. Bierens Pennsylvania State University (January 28, 2004) x 2., or x 1. x j. ' ' n i'1 x i well.,y 2

PHYC - 505: Statistical Mechanics Homework Assignment 4 Solutions

Finite element analysis of nonlinear structures with Newmark method

A Steady State Heat Conduction Problem in. a Thick Annular Disc Due to Arbitrary. Axisymmetric Heat Flux

ES.182A Topic 40 Notes Jeremy Orloff

Chapter 2: Introduction to Damping in Free and Forced Vibrations

NONLOCAL THEORY OF ERINGEN

Mechanical Vibrations - IMP Oral Questions. Balancing

Fourier Series and the Wave Equation

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Transcription:

1/5/013 Egieerig Mechaics Dyaics ad Vibratios Egieerig Mechaics Dyaics & Vibratios Egieerig Mechaics Dyaics & Vibratios Plae Motio of a Rigid Body: Equatios of Motio Motio of a rigid body i plae otio is copletely defied by the resultat ad oet resultat about the ass cetre G of the exteral forces. F a F a M J x x y y G D'lebert's priciple: iertia forces The particle acceleratio we easure fro a fixed set of axes X-Y-Z (Figure (a)) is its absolute acceleratio a. I this case the failiar relatio F a applies Whe we observe the particle fro a ovig syste x-y-z attached to the particle, the particle ecessarily appears to be at rest or i equilibriu. fictitious force -a (so called iertia force) acts o the particle (figure b) 1

1/5/013 Egieerig Mechaics Dyaics & Vibratios Plae Motio of a Rigid Body: D'lebert's priciple D'lebert's priciple: iertia forces D'lebert showed that oe ca trasfor a acceleratig rigid body ito a equivalet static syste by addig the so-called iertia forces - The traslatioal iertia ust act through the ceter of ass ad the rotatioal iertia ca act aywhere. The syste ca the be aalyzed exactly as a static syste. - The iertia forces are see to oppose the otio Egieerig Mechaics Dyaics & Vibratios Sprig-Mass Syste Sall Oscillatios d x x dt Newto s secod law p( t) kx x D lebert s priciple Fx 0 x kx p( t) 0

1/5/013 Egieerig Mechaics Dyaics & Vibratios Sprig-Mass Syste: Gravity Effect t static equilibriu cofiguratio k g st Now the particle is displaced through a distace x o fro its static equilibriu cofiguratio ad released with a velocity v o, the particle will udergo siple haroic otio Fro the free body diagra of the ass at a tie istat t with displaceet x(t) Fv 0 x 0 g k x st x kx 0 Goverig equatio of otio k k x x 0 where Egieerig Mechaics Dyaics & Vibratios Free Vibratios of Sprig-Mass Syste x( t) C si t C cos t 1 Geeral Solutio x is a periodic fuctio ad w is the atural circular frequecy of otio. C 1 ad C are deteried by the iitial coditios: x t C cos t o C1 si v x C1 cos t C si t @ tie t=0; x=x C x @ tie t=0; v=x=v o C 1 o vo v x t t x t 0 ( ) si o cos 3

1/5/013 Egieerig Mechaics Dyaics & Vibratios Siple Haroic Motio vo C1 C x o Displaceet is equivalet to the x copoet of the su of two vectors which rotate with costat agular velocity. v x t t x t 0 ( ) si o cos x x si t v 0 x x 0 aplitude ta 1 v x phase agle period 1 f atural frequecy 0 0 C 1 C Egieerig Mechaics Dyaics & Vibratios Siple Haroic Motio Velocity-tie ad acceleratio-tie curves ca be represeted by sie curves of the sae period as the displaceet-tie curve but differet phase agles. x x si t v x x x a x x x cos t si t si t si t 4

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 1 50-kg block oves betwee vertical guides as show. The block is pulled 40 dow fro its equilibriu positio ad released. For each sprig arrageet, deterie a) the period of the vibratio, b) the axiu velocity of the block, ad c) the axiu acceleratio of the block. SOLUTION: For each sprig arrageet, deterie the sprig costat for a sigle equivalet sprig. pply the D lebert s priciple for the haroic otio of a sprig-ass syste. Egieerig Mechaics Dyaics & Vibratios Saple Proble 1 k 4 kn k 6 kn 50kg 1 For equilibriu: Fv 0 x k1x kx 0 x ( k k ) x 0 k k k eq 1 x k x 0 eq 1 10kN Force diagra 4 10 N 4 keq 10 14.14 rad s ec 50 v a v x x t x 0.040 14.14 rad s x cos a x x t si 0.040 14.14 rad s 0.444 s v 0.566 s a 8.00 s 5

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 1 k1 4kN k 6kN For equilibriu: Fv 0 x k x 0 eq P k x k ( x x ) k x eq kx x1 k k 1 k1k P k k 1 1 1 1 k k k eq 1 1 1 1 x k x 400N/ 6.93rad s 0kg v x x t v a 0.040 6.93 rad s x cos a x x t si 0.040 6.93 rad s v 0.907 s 0.77 s a 1.90 s Egieerig Mechaics Dyaics & Vibratios Distributed Mass: Rotatioal Iertia J = Mass oet of Iertia about C.G J r d x dx Displaceet diagra J CG Force diagra θ L/ L/ L / J x dx L / ( ) ass / uit legth L ( L) L ML 1 1 1 3 L J CG 1 6

1/5/013 Egieerig Mechaics Dyaics & Vibratios Distributed Mass: Rotatioal Iertia L J y θ = L/ L/ L M Displaceet diagra Iertia Forces at C.G = Force diagra ML 1 Pure Traslatio + ML My + ML Iertia Forces at C.G Moet at due to iertia forces ML ML L ML J 1 3 C.G Pure Rotatio J CG J ML 3 Egieerig Mechaics Dyaics & Vibratios Saple Proble k 1 l l l k For the syste show, =0.4-kg, K 1 =N/ ad K =3N/. Takig the rod o which the ass is fixed as light ad stiff. Deterie a) Natural frequecy of the syste, b) the period of the vibratio. SOLUTION: Select a degree of freedo (sall displaceet). Represet deforatios of sprigs (for elastic forces) ad asses (for iertia forces) i ters of x(t) 7

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 1 3 st Gravity Effect 3 st st Displaceet Static equilibriu k st 1 3 Static Forces k st 3 t static equilibriu cofiguratio M 0 st 4 st k1 k g g 9 9 Egieerig Mechaics Dyaics & Vibratios Saple Proble 1 ( ) 3 x t 1 3 st Displaceet 1 For equilibriu: M 0 1 ( ) st k x t 3 3 1 st k1 x( t) l k x( t) st l x ( t)(3 l) g(3 l) 0 3 3 3 3 1 st 1 k1 x( t) k x( t) st x ( t) g 0 3 3 3 3 3 3 k 4k k 4k x t x t g 9 9 9 9 1 1 ( ) ( ) st 0 x t ( ) 3 x t 3 st k 4k 9 9 x( t) st 1 ( ) x( t) 0 k x( t) 3 3 st Equatio of Motio x ( t) forces g 8

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 1 ( ) 3 x t ( ) 3 x t static equilibriu cofiguratio l l l 1 k1 x ( t ) k x ( t ) 3 3 For equilibriu: M 0 x( t) x ( t) 1 k1 x( t) l k x( t) l x( t) 3l 0 3 3 1 1 x ( t) k1 k x( t) 0 3 3 3 3 displaceet k eq forces No Gravity Effect Equatio of otio x ( t) k x( t) 0 eq 3x4 9 9 N/ = 14 x10 3 N/ 9 keq 14000 9x0.4 6.36 rad/sec 0.100 sec Egieerig Mechaics Dyaics & Vibratios Saple Proble If distributed ass of the bar is cosidered ML 1 ML l l l 1 k x ( t) 1 x ( t ) k x ( t ) 3 3 For equilibriu: M 0 1 ML k1 x( t) l k x( t) l x( t) 3l 0 3 3 3 x ( t) 3l M 1 4 x( t) k1 k x( t) 0 3 9 9 forces L 3l oe ca also use priciple of virtual work to obtai the equatio of otio 9

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 3 k M=10kg a=0.1 b=0.05 SOLUTION: Select a degree of freedo (sall displaceet). Represet deforatios of sprigs (for elastic forces) ad asses (for iertia forces) i ters of θ Derive the equatio of otio of a rectagular block restig o a frictioless surface as show for sall oscillatios i a horizotal plae. Solve the equatio of otio by siplifyig it for M=10Kg, a=0.1, b=0.05, k=10kn/ Deterie a)natural frequecy of the syste, b) the period of the vibratio. Egieerig Mechaics Dyaics & Vibratios Saple Proble 3 bθ θ b/ a/ Displaceets For equilibriu: a 3 ( b ) kbθ b ab 0 M0 0 kb 0 a ab Forces ab a b 1 ( ) ab( a b ) a a b b ab ab kb ( b) 0 ab M 1 M ( a b ) a b M M kb 0 1 4 4 ass / uit area M a J o 3 ( b ) 10

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 3 Equatio of otio 0.0416 5 0 k 5 0.0416 4.514 rad/sec 0.56 sec Egieerig Mechaics Dyaics & Vibratios Saple Proble 4 3 3 SOLUTION: Select a degree of freedo (sall displaceet). Represet deforatios of sprigs (for elastic forces) ad asses (for iertia forces) i ters of x What are the differetial equatio of otio about the static equilibriu cofiguratio show ad the atural frequecy of otio of body for sall otio of BC? Neglect iertia effects fro BC. ssue K 1 = 15 N/, K = 0 N/, K 3 = 30 N/ ad W =30N 11

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 4 x a x D x D Displaceet diagra Force diagra The cofiguratio show is the static equilibriu ad give that rod BC is ass less (i.e eglect the iertia effect of BC). Here two equilibriu coditios exist i.e Fv 0 ad M c 0 F 0 v x k x k ( x x ) 0 (1) 1 D Egieerig Mechaics Dyaics & Vibratios Saple Proble 4 M c 0 1k x 3 k ( x x ) 0 () 3 D D Fro x k x (), D (3) k 4k3 Force diagra Thus due to iertia less rod BC the -dof proble reduces to 1-dof proble (sice x D depeds purely o x ). Substitute (3) i (1) 4k 3 x k1 k x 0 k 4k3 k1k 4 k3( k1 k) ( k 4k ) 3 3.4 rad/ sec 1

1/5/013 Egieerig Mechaics Dyaics & Vibratios Tutorial Saple proble-3 Proble 5 Rod B is attached to a hige at ad to two sprigs, each of costat k. if h=700, d=300, ad =0 kg, deterie the value of k for which the period of sall oscillatio is (a) 1sec, (b) ifiite. Neglect the ass of the rod ad assue that each sprig ca act i either tesio or copressio. Egieerig Mechaics Dyaics & Vibratios Saple Proble 5 hθ dθ θ Displaceets Forces h ( h) kd ( d) g( h ) 0 kd g 0 h h kd h g h 13

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 5 (a) (b) Egieerig Mechaics Dyaics & Vibratios Saple Proble 5 Oe ca also use priciple of iiu potetial eergy to obtai k whe T is ifiite By iiu potetial eergy, We have 1 V g h k d For equilibriu ( cos ) ( ) dv g h d ( si ) kd ( ) 0 θ=0 0 is a equilibriu cofiguratio 14

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble 5 For stability of Equilibriu: d V d d V d gh k d g( hcos ) kd k >763 N/ gh kd i.e. θ=0 0,Cofiguratio is stable for k >763N/ ( which is sae as that of vibratioal aalysis) 0 Egieerig Mechaics Dyaics & Vibratios Saple Proble 6 k L L M,J Lθ(t) M,J L/θ(t) Lθ(t) L/θ(t) Lθ(t) Lθ(t) k[ L ( t)] M[L/ ( t)] M[L/ ( t)] J ( t) M [ L ( t)] J ( t) Forces [ L ( t)] [ L ( t)] θ(t) Displaceets For equilibriu: M 0 ML ML L L ML 4 1 ML ML kl 0 1 4 5 L ML kl 0 3 15

1/5/013 Egieerig Mechaics Dyaics & Vibratios Daped Free Vibratios ll vibratios are daped to soe degree by forces due to dry frictio, fluid frictio, or iteral frictio. With viscous dapig due to fluid frictio, F a : W k st x cx x x cx kx 0 Substitutig x = e lt ad dividig through by e lt yields the characteristic equatio, c c k 0 c Defie the critical dapig coefficiet such that cc k 0 cc k k Egieerig Mechaics Dyaics & Vibratios Daped Free Vibratios Characteristic equatio, c c k 0 c cc critical dapig coefficiet k Defie dapig ratio c c c c i 1 Light dapig : c < c c c t x e C si t C cos t 1 d d t e C si t C cos t 1 d d Uderdaped Syste 1 daped frequecy d Critical dapig: c = c c t x C 1 C t e - double roots - ovibratory otio Heavy dapig: c > c c t t x C e 1 C e 1 - egative roots - ovibratory otio Critically daped Syste Overdaped Syste 16

1/5/013 Egieerig Mechaics Dyaics & Vibratios Daped Vs. Udaped Free Vibratios Daped t v o x o D o D D x t e x cos t si t vo xo xo D Udaped v x = x cos t o si t o vo xo I the figure use: u=x u(0)=x o u( o )= v o Egieerig Mechaics Dyaics & Vibratios Daped Free Vibratios (logarithic decreet) Fro the two successive peaks x x 1 = e T d 1 TD Note, T D T 1 c ad x l = T x 1 D 1 17

1/5/013 Egieerig Mechaics Dyaics & Vibratios Daped Free Vibratios For u( o )= v o 0,i.e oiitial velocity Egieerig Mechaics Dyaics & Vibratios Saple Proble loaded railroad car weighig 30,000 lb is rollig at a costat velocity v o whe it couples with a sprig ad dashpot buper syste. The recorded displaceet-tie curve of the loaded railroad car after couplig is as show. Deterie (a) the dapig costat, (b) the sprig costat. Source: BJ 18

1/5/013 Egieerig Mechaics Dyaics & Vibratios Saple Proble c 1 D x = e x e D 19