Demographic Inference with Coalescent Hidden Markov Model

Similar documents
Genetic Drift in Human Evolution

Hidden Markov models in population genetics and evolutionary biology

Challenges when applying stochastic models to reconstruct the demographic history of populations.

Learning ancestral genetic processes using nonparametric Bayesian models

Mathematical models in population genetics II

CSci 8980: Advanced Topics in Graphical Models Analysis of Genetic Variation

Estimating Evolutionary Trees. Phylogenetic Methods

Gene Genealogies Coalescence Theory. Annabelle Haudry Glasgow, July 2009

ECE521 Lecture 19 HMM cont. Inference in HMM

Frequency Spectra and Inference in Population Genetics

Hidden Markov Models. Terminology, Representation and Basic Problems

STA 414/2104: Machine Learning

EVOLUTIONARY DISTANCES

Computational statistics

Reading for Lecture 13 Release v10

Bustamante et al., Supplementary Nature Manuscript # 1 out of 9 Information #

How robust are the predictions of the W-F Model?

Introduction to Advanced Population Genetics

HMM part 1. Dr Philip Jackson

Phylogenomics of closely related species and individuals

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

Bioinformatics 2 - Lecture 4

Evolutionary Models. Evolutionary Models

Conditional probabilities and graphical models

O 3 O 4 O 5. q 3. q 4. Transition

6 Introduction to Population Genetics

Genetic Algorithms and Genetic Programming Lecture 17

STA 4273H: Statistical Machine Learning

CS1820 Notes. hgupta1, kjline, smechery. April 3-April 5. output: plausible Ancestral Recombination Graph (ARG)

Matt Heavner CSE710 Fall 2009

ABCME: Summary statistics selection for ABC inference in R

6 Introduction to Population Genetics

Anatomy of a species tree

Full Likelihood Inference from the Site Frequency Spectrum based on the Optimal Tree Resolution

Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Lecture 3: Markov chains.

Detecting selection from differentiation between populations: the FLK and hapflk approach.

TUTORIAL: HYPER-HEURISTICS AND COMPUTATIONAL INTELLIGENCE

Modelling Genetic Variations with Fragmentation-Coagulation Processes

Population Genetics I. Bio

ms a program for generating samples under neutral models

CS 68: BIOINFORMATICS. Prof. Sara Mathieson Swarthmore College Spring 2018

Models of Molecular Evolution

Contrasts for a within-species comparative method

Supplementary Materials for

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

BMI/CS 776 Lecture 4. Colin Dewey

Note Set 5: Hidden Markov Models

Noisy Pattern Search using Hidden Markov Models

DNA Phylogeny. Signals and Systems in Biology Kushal EE, IIT Delhi

Statistical Model Checking as Feedback Control

Intraspecific gene genealogies: trees grafting into networks

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Cladistics and Bioinformatics Questions 2013

Linear Dynamical Systems (Kalman filter)

Today s Lecture: HMMs

Populations in statistical genetics

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Supplementary Material to Full Likelihood Inference from the Site Frequency Spectrum based on the Optimal Tree Resolution

HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM

Jed Chou. April 13, 2015

Closed-form sampling formulas for the coalescent with recombination

The Wright-Fisher Model and Genetic Drift

A (short) introduction to phylogenetics

Copyright 2000 N. AYDIN. All rights reserved. 1

Hidden Markov Models. Ivan Gesteira Costa Filho IZKF Research Group Bioinformatics RWTH Aachen Adapted from:

Evolutionary Genetics: Part 0.2 Introduction to Population genetics

An Evolutionary Programming Based Algorithm for HMM training

Introduction to Machine Learning CMU-10701

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Genetic Algorithm. Outline

Cheng Soon Ong & Christian Walder. Canberra February June 2018

3/1/17. Content. TWINSCAN model. Example. TWINSCAN algorithm. HMM for modeling aligned multiple sequences: phylo-hmm & multivariate HMM

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles

Titles and Abstracts

Hidden Markov Models Part 1: Introduction

Sequence Alignment Techniques and Their Uses

Week 7.2 Ch 4 Microevolutionary Proceses

The Phylogenetic Handbook

DNA Feature Sensors. B. Majoros

Lecture 21: Spectral Learning for Graphical Models

A concentration fluctuation model for virtual testing of detection systems

Chapter 8: Introduction to Evolutionary Computation

Introduction to population genetics & evolution

Reduced-Rank Hidden Markov Models

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G.

Evolutionary Computation Theory. Jun He School of Computer Science University of Birmingham Web: jxh

Bayesian Networks BY: MOHAMAD ALSABBAGH

NEUROEVOLUTION. Contents. Evolutionary Computation. Neuroevolution. Types of neuro-evolution algorithms

Bioinformatics: Network Analysis

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Three Steps toward Tuning the Coordinate Systems in Nature-Inspired Optimization Algorithms

Linear Dynamical Systems

Stochastic Demography, Coalescents, and Effective Population Size

A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent

Geometry of Phylogenetic Inference

Search. Search is a key component of intelligent problem solving. Get closer to the goal if time is not enough

The Combinatorial Interpretation of Formulas in Coalescent Theory

Transcription:

Demographic Inference with Coalescent Hidden Markov Model Jade Y. Cheng Thomas Mailund Bioinformatics Research Centre Aarhus University Denmark The Thirteenth Asia Pacific Bioinformatics Conference HsinChu, Taiwan, January 2015

Presentation Outline CoalHMM framework Overview Model construction Continuous time Markov chain (CTMC) Hidden Markov model (HMM) Numerical optimization Genetic algorithm Particle swarm optimzation Model construction and implementation Simulation case studies Isolation model IIM with nine epochs Simulation case studies

Framework Overview CoalHMM is a demorgraphic inference framework based on combining the sequential Markov coalescence with hidden Markov models. E.g. Ancestral Period Migration Period Isolation Period Migration Demorgraphic parameters: 1. Isolation duration 2. Migration duration 3. Coalescent rate 4. Recombination rate 5. Migration rate Our framework is available under open source licence GPLv2 at h ps://github.com/mailund/imcoalhmm

Presentation Outline CoalHMM framework Overview Model construction Continuous time Markov chain (CTMC) Hidden Markov model (HMM) Numerical optimization Genetic algorithm Particle swarm optimzation Model construction and implementation Simulation case studies Isolation model IIM with nine epochs Simulation case studies

Hidden Markov Model In the context of CoalHMM, hidden states are different coalescence trees. E.g. for two samples, the hidden states are the coalescence times. ^ ------------------------------------------------------------- t3 x ------------/-\---------------------------------------------- t2 / \ x ----------/-----\-----------------/-\------------------------ t1 / \ / \ x --------/---------\-------------/-----\-----------/-\-------- t0 time o o o o o o HMM state #3 HMM state #2 HMM state #1

HMM Transition Probabilities Transition probability T ij is the normalized joint probability J ij, which is the probability of observing coalescence of the le nucleotide in time period i and coalescence of the right nucleotide in time period j. E.g. ^ --------------------- t4 x x --------------------- t3 x-x --------------------- t2 o-o o o --------------------- t1 o-o o-o --------------------- t0 time o-o o-o E.g. ^ ------------------------------ t4 x-x ------------------------------ t3 o x-o ------------------------------ t2 o o o-o ------------------------------ t1 o-o o-o ------------------------------ t0 time o-o o-o J 33 J 34

Continuous Time Markov Chain CTMC state space for two samples in two isolated populations. 0 1 2 3 0 1 2 3 0 - C2 C1 0 1 R - 0 C1 2 R 0 - C2 3 0 R R - 0 [(1, ([1], [])), (1, ([], [1])), (2, ([2], [])), (2, ([], [2]))] 1 [(1, ([1], [])), (1, ([], [1])), (2, ([2], [2]))] 2 [(1, ([1], [1])), (2, ([2], [])), (2, ([], [2]))] 3 [(1, ([1], [1])), (2, ([2], [2]))]

Continuous Time Markov Chain CTMC state space for two samples in a single population. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 - C1 C1 C1 C1 0 0 C1 0 0 C1 0 0 0 0 1 R - 0 0 0 C1 0 0 C1 0 0 C1 0 0 0 2 R 0-0 0 0 C1 0 0 C1 0 C1 0 0 0 3 R 0 0-0 0 C1 0 C1 0 0 0 C1 0 0 4 R 0 0 0 - C1 0 0 0 C1 0 0 C1 0 0 5 0 R 0 0 R - 0 0 0 0 0 0 0 0 C1 6 0 0 R R 0 0-0 0 0 0 0 0 0 C1 7 0 0 0 0 0 0 0 - C1 C1 0 0 0 C1 0 8 0 0 0 0 0 0 0 R - 0 0 0 0 0 C1 9 0 0 0 0 0 0 0 R 0-0 0 0 0 C1 10 0 0 0 0 0 0 0 0 0 0 - C1 C1 C1 0 11 0 0 0 0 0 0 0 0 0 0 R - 0 0 C1 12 0 0 0 0 0 0 0 0 0 0 R 0-0 C1 13 0 0 0 0 0 0 0 0 0 0 0 0 0 - C1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 R -

Continuous Time Markov Chain 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 e size of CTMC state space grows exponentially with the number of populations, samples, or loci. E.g. CTMC for a 3 samples 3 populations 2 loci 2 donor populations 1 receiver population demographic senario has 578 states.

CTMC Projections We need projection matrices to move samples between time slices that have different CTMC state spaces. No Match Match 2 3 6 7 8 9 10 11 12 13 14 Single CTMC 0 4 1 5 0 1 2 3 Isolation CTMC Isolation CTMC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 --+---------------------------------------------- 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Single CTMC

HMM Transition Probabilities Transition probability T ij is the normalized joint probability J ij, which is the probability of observing coalescence of the le nucleotide in time period i and coalescence of the right nucleotide in time period j. E.g. ^ --------------------- t4 x x --------------------- t3 x-x --------------------- t2 o-o o o --------------------- t1 o-o o-o --------------------- t0 time o-o o-o E.g. ^ ------------------------------ t4 x-x ------------------------------ t3 o x-o ------------------------------ t2 o o o-o ------------------------------ t1 o-o o-o ------------------------------ t0 time o-o o-o J 33 J 34

HMM Transition Probabilities For a two-sample CTMC, we can split its rate and probability matrices into 16 sections using the 4 state types: begin (B), le (L), right (R), and end (E) E.g. for the two-sample single-population CTMC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HMM Transition Probabilities ere are three possible ways to reach an E state from a B state, which is the initial condition of two samples. Goal: Possible Paths: B to E Legal Moves: B to B B to L B to R B to E L to L L to E R to R R to E #1 B to B B to E #2 B to B B to L L to L L to E #3 B to B B to R R to R R to E

HMM Transition Probabilities e probability of taking path 3 is the same as taking path 2. Joint probability matrix, J, is symmetric. B L R E ----- ----- ----- ----- B B-B B-L B-R B-E ----- ----- ----- ----- L L-B L-L L-R L-E P = ----- ----- ----- ----- R R-B R-L R-R R-E ----- ----- ----- ----- E E-B E-L E-R E-E ----- ----- ----- ----- P LE

HMM Transition Probabilities E.g. a simple joint probability calculation ^ --------------------- t4 x x --------------------- t3 o x o --------------------- t2 o x-o --------------------- t1 o o o-o --------------------- t0 time o-o o-o

HMM Transition Probabilities E.g. another joint probability calculation involving CTMC projection. ^ ------------------------------ t4 x-x ------------------------------ t3 o x-o ------------------------------ t2 o o o-o ------------------------------ t1 o o o-o ------------------------------ t0 time o-o o-o

Presentation Outline CoalHMM framework Overview Model construction Continuous time Markov chain (CTMC) Hidden Markov model (HMM) Numerical optimization Genetic algorithm Particle swarm optimzation Model construction and implementation Simulation case studies Isolation model IIM with nine epochs Simulation case studies

optimization optimization minimises an objective function in a manydimensional space by continuously refining a simplex. reflect p e contract p r expand p c p min shrink p max

A is a type of evolutionary algorithm. evaluation selection mutation crossover

Fitness Proportion Selection Selection: a GA chooses a relatively fit subset of individuals for breeding. E.g. fitness 40; fitness 25; fitness 18; fitness 12; fitness 5 Roule e Wheel Selection Universal Sampling Breeding Pool Breeding Pool

Rank Based Selection Tournament selection selects individuals with the highest fitness values from random subsets of the population. E.g. fitness 40; fitness 25; fitness 18; fitness 12; fitness 5 Tournament #1 Tournament #2 Original Population Tournament #3 Breeding Pool

Crossover & Mutation Crossover: it is a genetic operation used to combine pairs of individuals previously selected for breeding the following generation. One-point crossover Two-point crossover Uniform crossover Mutation: each position has a certain probability to mutate, mutation

Genetic Optimization PSO is another heuristic based search algorithm. velocity cognitive influence global influence

Presentation Outline CoalHMM framework Overview Model construction Continuous time Markov chain (CTMC) Hidden Markov model (HMM) Numerical optimization Genetic algorithm Particle swarm optimzation Model construction and implementation Simulation case studies Isolation model IIM with nine epochs Simulation case studies

Pipeline & Isolation Model Simulation study pipeline. O P T I M ms seq-gen CoalHMM ziphmm I S A T I O N e simplest demographic model we consider is the clean isolation model. It has three parameters. Ancestral Period Isolation Period True Value: 0.002 10-2 10-3 Isolation Time True Value: 1000.0 10 4 10 3 10 2 Coalescent Rate True Value: 0.4 10 0 10-1 Recombination Rate

IIM-Nine Epoch Model 10-2 Isolation Time Migration Time Recombination Rate 10 4 Coalescent Rate #1 True Value: 0.001 10-3 10-4 (31.3% out of range) True Value: 0.008 10-2 10-3 (3.2% out of range) True Value: 0.4 10 0 10-1 True Value: 1000.0 10 3 10 2 (20.4% out of range) Ancestral Epoch 9 Ancestral Epoch 8 Ancestral Epoch 7 Migration Epoch 6 True Value: 1000.0 10 4 10 3 10 2 (23.5% out of range) Coalescent Rate #2 True Value: 1000.0 10 4 10 3 10 2 (21.9% out of range) Coalescent Rate #3 True Value: 1000.0 10 4 10 3 10 2 (15.7% out of range) Coalescent Rate #4 True Value: 1000.0 10 4 10 3 10 2 (39.1% out of range) Coalescent Rate #5 Migration Epoch 5 Migration Epoch 4 Isolation Epoch 3 Isolation Epoch 2 Isolation Epoch 1 Migration True Value: 1000.0 4 Coalescent Rate #6 10 10 3 10 2 (51.6% out of range) Migration Rate #1 (1.6% out of range) True Value: 1000.0 10 4 10 3 10 2 (28.2% out of range) Coalescent Rate #7 Migration Rate #2 True Value: 1000.0 10 4 10 3 10 2 (42.2% out of range) Coalescent Rate #8 Migration Rate #3 True Value: 1000.0 10 4 10 3 10 2 (34.4% out of range) Coalescent Rate #9 True Value: 250.0 10 3 10 2 True Value: 250.0 10 3 10 2 True Value: 250.0 10 3 10 2 (9.4% out of range) (43.8% out of range) (42.2% out of range)

Discussion We discussed the construction of our statistic inference framework, CoalHMM and showed how to infer demographics with it. CTMC HMM Numerical Optimization We compared the estimation accuracy between the previously-used with newly developed optimization methods GA PSO We presented the inference results on two demographic models, a Ancestral Epoch 9 simple one and a more complex one. Ancestral Epoch 8 Ancestral Period Isolation Period Ancestral Epoch 7 Migration Epoch 6 Migration Epoch 5 Migration Epoch 4 Isolation Epoch 3 Migration Isolation Epoch 2 Isolation Epoch 1

Acknowledgement Thanks!