PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Similar documents
Chapter 27. Circuits

Chapter 28. Direct Current Circuits

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Chapter 7 Direct-Current Circuits

Direct Current Circuits. February 18, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Direct-Current Circuits

Circuits. David J. Starling Penn State Hazleton PHYS 212

AP Physics C. Electric Circuits III.C

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Chapter 26 Direct-Current Circuits

Chapter 28. Direct Current Circuits

Direct-Current Circuits. Physics 231 Lecture 6-1

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

MasteringPhysics: Assignment Print View. Problem 30.50

Chapter 28. Direct Current Circuits

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

Chapter 26 Direct-Current Circuits

Physics 1214 Chapter 19: Current, Resistance, and Direct-Current Circuits


ANNOUNCEMENT ANNOUNCEMENT

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Electricity & Magnetism

Physics 142 Steady Currents Page 1. Steady Currents

Lecture 16 - Circuit Problems

Electric Currents. Resistors (Chapters 27-28)

Tactics Box 23.1 Using Kirchhoff's Loop Law

Inductance, RL Circuits, LC Circuits, RLC Circuits

Physics 102: Lecture 06 Kirchhoff s Laws

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

Circuits. Electric Current & DC Circuits. Slide 1 / 127. Slide 2 / 127. Slide 3 / 127. Slide 4 / 127. Slide 5 / 127. Slide 6 / 127

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

AP Physics C - E & M

EXPERIMENT 12 OHM S LAW

Version 001 CIRCUITS holland (1290) 1

Electric Current & DC Circuits

Lecture 19: WED 07 OCT

Capacitance, Resistance, DC Circuits

Physics 202: Lecture 5, Pg 1

Physics for Scientists & Engineers 2

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

Lecture 12 Chapter 28 RC Circuits Course website:

Chapter 3: Electric Current and Direct-Current Circuit

Physics 2135 Exam 2 October 20, 2015

SPS Presents: A Cosmic Lunch!

Chapter 26 Examples : DC Circuits Key concepts:

A positive value is obtained, so the current is counterclockwise around the circuit.

Chapter 26 & 27. Electric Current and Direct- Current Circuits

The RC Time Constant

Problem Solving 8: Circuits

Chapter 3: Electric Current And Direct-Current Circuits

RC Circuits. Lecture 13. Chapter 31. Physics II. Course website:

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Physics 212 Midterm 2 Form A

Laboratory 7: Charging and Discharging a Capacitor Prelab

Discussion Question 6A

Current and Resistance

Chapter 20 Electric Circuits

COPYRIGHTED MATERIAL. DC Review and Pre-Test. Current Flow CHAPTER

Chapter 19 Lecture Notes

ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS

R R V I R. Conventional Current. Ohms Law V = IR

Circuits. 1. The Schematic

Chapter 28 Solutions

PHYS 1444 Section 003 Lecture #12

Electricity & Optics

Physics 2135 Exam 2 March 22, 2016

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Circuits. PHY2054: Chapter 18 1

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

AP Physics C - E & M

Chapter 21 Electric Current and Direct- Current Circuits

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

Chapter 26 Direct-Current and Circuits. - Resistors in Series and Parallel - Kirchhoff s Rules - Electric Measuring Instruments - R-C Circuits

Chapter 21 Electric Current and Direct- Current Circuits

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Flow Rate is the NET amount of water passing through a surface per unit time

Physics 6B Summer 2007 Final

Multi-loop Circuits and Kirchoff's Rules

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Physics 102 Lab 4: Circuit Algebra and Effective Resistance Dr. Timothy C. Black Spring, 2005

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

Science Olympiad Circuit Lab

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

PEP 2017 Assignment 12

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

Lab 6. RC Circuits. Switch R 5 V. ower upply. Voltmete. Capacitor. Goals. Introduction

Switch + R. ower upply. Voltmete. Capacitor. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Chapter 23 Revision problem. While we are waiting, please try problem 14 You have a collection of six 1kOhm resistors.

Physics 1302W.400 Lecture 21 Introductory Physics for Scientists and Engineering II

Induction and inductance

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems.

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

3/17/2009 PHYS202 SPRING Lecture notes Electric Circuits

Transcription:

PH 222-2C Fall 2012 Circuits Lectures 11-12 Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1

Chapter 27 Circuits In this chapter we will cover the following topics: -Electromotive force (emf) -Ideal and real emf devices -Kirchhoff s loop rule -Kirchhoff s junction rule -Multiloop circuits -Resistors in series -Resistors in parallel -RC circuits, charging and discharging of a capacitor 2

In order to create a current through a resistor, a potential difference must be created across its terminals. One way of doing this is to connect the resistor to a battery. A device that can maintain a potential difference between two terminals is called a "seat of an emf " or an "emf device." Here emf stands for electromotive force. Examples of emf devices are a battery, an electric generator, a solar cell, a fuel cell, etc. These devices act like "charge pumps" in the sense that they move positive charges from the low-potential (negative) terminal to the high-potential (positive) terminal. A mechanical analog is given in the figure below. pump High (+) reservoir Low (-) reservoir In this mechanical analog a water pump transfers water from the low to the high reservoir. The water returns from the high to the low reservoir through a pipe, which is the analog of the resistor. The emf (symbol ) is defined as the potential difference between the terminals of the emf device when no current flows through it. 3

Notation : The polarity of an emf device is indicated by an arrow with a small circle at its tail. The arrow points from the negative to the positive terminal of the device. When the emf device is connected to a circuit its internal mechanism transports positive charges from the negative to the positive terminal and sets up a charge flow (a.k.a. current) around the circuit. In doing so the emf device does work dw on a charge dq, which is given by the equation dw dq. The required energy comes from chemical reactions in the case of a battery; in the case of a generator it comes from the mechanical force that rotates the generator shaft; in the case of a solar cell it comes from the Sun. In the circuit of the figure the energy stored in emf device B changes form: It does mechanical work on the motor. It produces thermal energy on the resistor. It gets converted into chemical energy in emf device A. 4

Ideal and Real Emf Devices V Ideal emf device V i V ir Real emf device V An emf device is said to be ideal if the voltage V across its terminals a and b does not depend on the current i that flows through the emf device: V. An emf device is said to be real if the voltage V across its terminals a and b decreases with current i according to the equation V ir. The parameter r is known as the " internal resistance" of the emf device. i 5

ir 0 Current in a Single - Loop Circuit Consider the circuit shown in the figure. We assume that the emf device is ideal and that the connecting wires have negligible resistance. A current i flows through the circuit in the clockwise direction. In a time interval dt a charge dq idt passes through the circuit. The battery is doing work dw dq idt. Using energy conservation we can set this amount of work equal to the rate at which heat is generated on R: idt 2 Ri dt Ri ir 0. Kirchhoff put the equation above in the form of a rule known as Kirchhoff's loop rule (KLR for short). KLR : The algebraic sum of the changes in potential encountered in a complete traversal of any loop in a circuit is equal to zero. The rules that give us the algebraic sign of the charges in potential through a resistor and a battery are given on the next page. 6

i i R motion R motion V V -ir ir Resistance Rule : For a move through a resistance in the direction of the current, the change in the potential is V ir. For a move through a resistance in the direction opposite to that of the current, the change in the potential is V ir. - + motion + - motion V V - EMF Rule : For a move through an ideal emf device in the direction of the emf arrow, the change in the potential is V. For a move through an ideal emf device in a direction opposite to that of the emf arrow, the change in the potential is V. 7

KLR example : Consider the circuit of fig. a. The battery is real with internal resistance r. We apply KLR for this loop starting at point a and going counterclockwise: ir ir 0 i. We note that for an ideal battery, r 0 and i. R r R Note : The internal resistance r of the battery is an integral part of the battery's internal mechanism. There is no way to open the battery and remove r. In fig. b we plot the potential V of every point in the loop as we start at point a and go around in the clockwise direction. The change V in the battery is positive because we go from the negative to the positive terminal. The change V across the two resistors is negative because we chose to traverse the loop in the direction of the current. The current flows from high to low potential. 8

Potential Difference Between Two Points : Consider the circuit shown in the figure. We wish to calculate the potential difference V V between point b and point a. b a V V sum of all potential changes V along the path from point a to point b. b a We choose a path in the loop that takes us from the initial point a to the final point b. V V sum of all potential changes V along the path. f There are two possible paths: We will try them both. Left path: Right path: i Note : V V ir b b a V V ir a The values of V V we get from the two paths are the same. b a 9

6. A current of 1A flows through the wire shown in Fig. What will a voltmeter read when connected from: (a) A to B (b) A to C (c) A to D 1 A 2 5 V 10V 3 A B C D a) V AB =V B -V A =IR=2V; b) V AC =V C -V A =V C -(V C -5V-2V)=7V; c) V AD =V D -V A =V D -(V D +10V-3V-5V-2V)=V D -V D - 10V+3V+5V+2V=0V 10

i V Equivalent Resistance Consider the combination of resistors shown in the figure. We can substitute this combination of resistors with a single resistor R that is eq "electrically equivalent" to the resistor group it substitutes. This means that if we apply the same voltage V across the resistors in fig. a and across R, the same current i is provided by the battery. eq Alternatively, if we pass the same current i through the circuit in fig. a and through the equivalent resistance R, the voltage V across them is identical. This can be stated in the following manner: If we place the resistor combination and the equivalent resistor in separate black boxes, by doing electrical measurements we cannot distinguish between the two. eq 11

Req R1 R2 R3 Req R1 R2... Rn Resistors in Series Consider the three resistors connected in series (one after the other) as shown in fig. a. These resistors have the same current i but different voltages V, V, and V. 1 2 3 The net voltage across the combination is the sum V V V. 1 2 3 1 2 3 We will apply KLR for the loop in fig. a starting at point a, and going around the loop in the clockwise direction: ir1ir2 ir3 0 i ( eq. 1) R R R We will apply KLR for the loop in fig. b starting at point a, and going around the loop in the clockwise direction: ireq 0 i ( eq. 2) R If we compare eq. 1 with eq. 2 we get: eq R R R R eq 1 2 3 For n resistors connected in series, the equivalent resistance is: n R R R R... R eq i 1 2 i1 n 12.

1 1 1 1 R R R R eq 1 2 3 Resistors in Parallel Consider the three resistors shown in the figure. "In parallel" means that the terminals of the resistors are connected together on both sides. Thus resistors in parallel have the same potential applied across them. In our circuit this potential is equal to the emf of the battery. The three resistors have different currents flowing through them. The total current is the sum of the individual currents. We apply KJR at point a: i i i i i i i 1 2 3 1 2 3 R1 R2 R3 1 1 1 i (eq. 1). From fig. b we have: R1 R2 R3 i (eq. 2). If we compare equations 1 and 2 R eq 1 1 1 1 we ge t:. R R R R eq 1 2 3 13

14

Multiloop Circuits Consider the circuit shown in the figure. There are three branches in it: bad, bcd, and bd. We assign currents for each branch and define the current directions arbitrarily. The method is selfcorrecting. If we have made a mistake in the direction of a particular current, the calculation will yield a negative value and thus provide us with a warning. We assign current i for branch bad, current i for branch bcd, and current i for branch 1 2 3 bd. Consider junction d. Currents i and i arrive, while i leaves. 1 3 2 Charge is conserved, thus we have: i 1 i 3 i 2. This equation can be formulated as a more general principle known as Kirchhoff's junction rule (KJR). KJR : The sum of the currents entering any junction is equal to the sum of the currents leaving the junction. 15

In order to determine the currents i, i, and i 1 3 2 1 2 3 in the circuit we need three equations. The first equation will come from KJR at point d: KJR/junction d: i i i ( eq. 1) The other two will come from KLR: If we traverse the left loop ( bad) starting at b and going in the counterclockwise direction we get: KLR/loop bad: i R i R 0 ( eq. 2). Now we go around the right loop ( bcd) 1 1 1 3 3 starting at point b and going in the counterclockwise direction: KLR/loop bcd: i R i R 0 ( eq. 3) 3 3 2 2 2 We have a system of three equations (eqs.1, 2, and 3) and three unknowns i, i, and i. If a numerical value for a particular current is negative, this means that the chosen direction for this current is wrong and that the current flows in the opposite direction. We can write a fourth equation (KLR for the outer loop not provide any new information. KLR/loop abcd: i R i R 0 ( eq. 4) 1 1 1 2 2 2 1 2 abcd) but this equation does 16 3

!!! When calculating the potential change across a resistor we must take the product of the resistance and the net current trough the resistor. The net current is the algebraic sum of all the currents flowing through the resistor. 17

in 18

19

20

21

22

8. 23

Ammeters and Voltmeters An ammeter is an instrument that measures current. In order to measure the current that flows through a conductor at a certain point we must cut the conductor at this point and connect the two ends of the conductor to the ammeter terminals so that the current can pass through the ammeter. An example is shown in the figure, where the ammeter has been inserted between points a and b. It is essential that the ammeter resistance R be much smaller than the other resistors in the circuit. In our example: R R and R R. A A 1 A 2 A voltmeter is an instrument that measures the potential difference between two points in a circuit. In the example of the figure we use a voltmeter to measure the potential across R. The voltmeter terminals are connected to the two points c and d. 1 It is essential that the voltmeter resistance R be much larger than the other resistors in the circuit. In our example: R R and R R. 24 V V 1 V 2

i + - RC Circuits : Charging of a Capacitor Consider the circuit shown in the figure. We assume that the capacitor is initially uncharged and that at t 0 we throw the switch S from the middle position to position a. The battery will charge the capacitor C through the resistor R. Our objective is to examine the charging process as a function of time. We will write KLR starting at point b and going in the clockwise direction: q dq dq q ir 0. The current i R 0. If we rearrange the terms C dt dt C dq q we have: R. This is an inhomogeneous, first order, linear differential dt C equation with initial condition q(0) 0. This condition expresses the fact that at t 0 the capacitor is uncharged. 25

dq Differential equation: dt Intitial condition: q(0) 0 t/ Solution: 1 Here: q R C qc e RC The constant is known as the "time constant" of the circuit. If we plot q versus t we see that q does not reach its terminal value C but instead increases from its initial value and reaches the terminal value at t. Do we have to wait for an eternity to charge the capacitor? In practice, no. qt ( ) 0.632 qt ( 3 ) 0.950 qt ( 5 ) 0.993 C C C If we wait only a few time constants the charge, for all practical purposes, has reached its terminal value C. dq t/ The current i e. If we plot i versus t dt R we get a decaying exponential (see fig. b). RC 26

i RC Circuits : Discharging of a Capacitor Consider the circuit shown in the figure. We assume q o O q RC t + - that the capacitor at t 0 has charge q and that at t 0 we throw the switch S from the middle position to position b. The capacitor is disconnected from the battery and loses its charge through resistor R. We will write KLR starting at point b and going in q the counterclockwise direction: ir 0. C Taking into account that i dq we get: - dq R q 0. dt dt C 0 This is a homogeneous, first order, linear differential equation with initial condition q q q q e RC q t -/ t (0) 0 The solution is: 0, where. If we plot versus we get a decaying exponential. The charge becomes zero at t only have to wait a few time constants: q( ) 0.368 q, q(3 ) 0.049 q, q(5 ) 0.007 q. 0 0 0. In practical terms we 27