F í s. i c HARMONIC MOTION. A p l. i c a U C L M

Similar documents
Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Symmetries 2 - Rotations in Space

F = ma, F R + F S = mx.

Chapter 14 Periodic Motion

MEG 741 Energy and Variational Methods in Mechanics I

CHAPTER 12 OSCILLATORY MOTION

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University

Spring 2002 Lecture #13

Lecture 9-3/8/10-14 Spatial Description and Transformation

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

PHYS 21: Assignment 4 Solutions

10/23/2003 PHY Lecture 14R 1

Variation Principle in Mechanics

Oscillatory Motion SHM

10/9/2003 PHY Lecture 11 1

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

Chapter 13: Oscillatory Motions

ME 230: Kinematics and Dynamics Spring 2014 Section AD. Final Exam Review: Rigid Body Dynamics Practice Problem

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Simple Harmonic Motion

(4.1) D r v(t) ω(t, v(t))

Lecture Notes for PHY 405 Classical Mechanics

Rotational motion problems

Unforced Oscillations

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

Physics 111. Lecture 11 (Walker: 6.1-2) Friction Forces. Frictional Forces. Microscopic Friction. Friction vs. Area

Chapter 15 - Oscillations

Solution Derivations for Capa #12

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

Exam II Difficult Problems

Lecture 18. In other words, if you double the stress, you double the resulting strain.

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Physics 4B. Question 28-4 into page: a, d, e; out of page: b, c, f (the particle is negatively charged)

Physics III: Final Solutions (Individual and Group)

Rotary motion

Study Guide For Exam Two

Lagrangian Dynamics: Derivations of Lagrange s Equations

Problem 1 Problem 2 Problem 3 Problem 4 Total

Chap. 15: Simple Harmonic Motion

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

Matrix Methods in Kinematics

Chapter 10: Rotation

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Two dimensional oscillator and central forces

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

Chapter 6: Vector Analysis

Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω =

Chapter 15 Oscillations

= o + t = ot + ½ t 2 = o + 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term Exam 2 Solutions

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

Introductory Physics. Week 2015/05/29

v v at 1 2 d vit at v v 2a d

Chapter 13 Solutions

Chapter 15 Periodic Motion

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

PHYSICS 218 Exam 3 Fall, 2013

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton

Haddow s Experiment:

Mass on a Horizontal Spring

Chapter 11: Angular Momentum

Physics 101 Lecture 11 Torque

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

PHYSICS 149: Lecture 22

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

Damped Oscillation Solution

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson.

Physics 8, Fall 2011, equation sheet work in progress

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

EXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M.

[ ] ( ) L = L = r p. We can deal with this more conveniently by writing: so that L becomes: α α α. α α N N N N

Linear Differential Equations. Problems

Note: Referred equations are from your textbook.

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester

Physics 351 Monday, January 22, 2018

Using Simulink to analyze 2 degrees of freedom system

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Beechwood Music Department Staff

( ) rad ( 2.0 s) = 168 rad

Oscillations. Oscillations and Simple Harmonic Motion

Linear Momentum. Center of Mass.

Conservation of Energy

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權

Chapter 11. Angular Momentum

Physics 8, Fall 2013, equation sheet work in progress

Transcription:

HRONI OTION 070311 1

Hooke w hrterzton of Sme Hrmon oton (SH) Veoty n eerton n hrmon moton. Exeme. Horzont n vert rng Sme enuum Phy enuum Energy n hrmon moton Dme hrmon moton

Hooke w Srng ontnt The fore exerte by rng roorton to the tne to whh the rng trethe or omree from t rexe oton (for m x). 0 Rexe oton x kx x - 0 ement m Newton n w: m x kx m t t x k + x m 0 n orer Dfferent Eq.: t outon x( t) o( ω t + δ ) 3

hrterzton of hrmon moton. x k D.E. outon: + x 0 t m Phe x( t) o( ω t + δ ) ontnt,δ ngur frequeny ω mtue x + ω x t Int he k m (r/) 0 ω π T Pero () f 1 T reueny (Hz) 4

hekng for the outon of the DE of hrmon moton x k By ervng x( t) o( ω t + δ ) nubttutngn + x 0 t m rt ervtve: Seon ervtve: ω + k m 0 x t ω en( ωt + δ ) x ω o( ωt + δ ) ω x t ω + k m x 0 ω x + k m x 0 x k x( t) o( ω t + δ ) outon of + x 0 t m when ω k m 5

y o( ωt) ωt 0 π ω t ωt π 5π ω t ωt 4π t T ω t π 3π ω t ωt ωt 3π 7π ω t 6

y o( ωt + δ ) δ > 0 o(δ ) π ω t + δ t T ω t + δ π ωt + δ π 3π ω t + δ ωt 5π ω t + δ t T ωt + δ 3π ωt + δ 4π 7π ω t + δ 7

y o( ωt δ ) δ > 0 o( δ ) ωt δ 0 π ω t δ t T ω t δ π ωt δ π 3π ω t δ ωt 5π ω t δ t T ωt δ 3π ωt δ 4π 7π ω t δ 8

btrt y y y o( ωt) o( ω t + δ ) he o( ωt δ ) Behn The oton n re he of the bk one ωt The oton n bue behn the bk one 9

Veoty n eerton n hrmon moton x( t) o( ω t + δ ) x( t) Veoty x& ω en( ωt + δ ) t x( t) eerton && x ω o( ωt + δ ) ω x( t) t x Zero veoty x 0 xmum eerton Zero eerton xmum veoty 10

Exme. Srng yng on horzont ne. n e rng of et ontnt 0 N/m jon bok of m 31.5 g on ft horzont urfe wthout frton. The rng trethe 8 m, then t reee n the m ote freey roun t equbrum oton. n: ) Equton for the reutng hrmon moton n the ero of the oton. b) eerton of the bok when t rehe the utmot oton, n t eerton when t ng through the equbrum oton. ) Veoty n eerton of the bok when 1 h gone by. x( t) o( ω t + δ ) x ( 0) o(0 + δ ) 0.08 m ω m k 0 0.315 8 r/ x( t) o( ω t + δ ) o δ 1 x( t) oωt 0.08 o8t π π π T 0.785 ω 8 4 o δ ±nπ ( n 0,1,...) (I.S. unt) 11

x0 0 0 x Rexe rng oton, ytem t ret Strethe rng oton: the oton begn -k x& -k x && x && x ( ω x ) t x ω x 8 0.08 5.1 m/ Intermete ont: the otor goe to the orgn T > t > 0 4 x 1

x0 x& x t 0 ω enωt 0 x& & x( x 0) When x0 one qurter of ero h gone by. x x& -k x The otor e through the equbrum oton: mxmum veoty, zero eerton T t 4 π T ω en T 4 en π ω 0.08 8 0.64 m/ The otor overe the equbrum oton menwhe t veoty eree n t eerton nree 13

Wht hen fterwr, unt t T? Wht re veoty n eerton? Wht re veoty n eerton when 1 h gone by? 14

btrt x 0 x v 0 mx t 0 x 0 v vmx 0 t T / 4 x v 0 + mx t T / x 0 v + vmx 0 t 3T / 4 x v t T 0 mx x x 15

Exme. Srng n vert oton Hooke w kx.b.d. mg m 0 x x - 0 n Newton w m g+ m t x + k m x g x mg kx m t 16

Equton for the vert rng The outon : t x x + t k m x g x + t k m x mg x( t) + o( ω t + δ ) k k mg ω o( ωt + δ ) + + o( ωt + δ ) m k k m x g Dertve: ω x t ω en( ωt + δ ) x ω o( ωt + δ ) t k ω + t + + g m o( ω δ ) k m g the equton tfe! 17

Sme enuum O θ T mg mg enθ T Y θ X mg oθ O θ mg enθ Torque O ten to retore the equbrum oton mg O mg enθ 18

oment of the X-omonent of weght (bout O): unment equton for rotton O J mv m θ θ v t θ t O mg J t O J t m enθ θ t mg enθ m θ t mg enθ v θ g + enθ 0 t 19

omre θ g + enθ 0 t or m nge en θ θ Then θ g + enθ 0 t orm of the outon: Pero: x k wth + x 0 t m Sme enuum Srng θ g n be ubttute by + θ 0 t θ ( t) o( ωt + δ ) T π π ω g ω g 0

Wht re re m nge? R 1 r R R R θ R ength of r θ R nge (rn) Ru θ (º) θ (r) n θ f % 0 0.0000 0.0000 0.0 0.0349 0.0349 0.0 5 0.0873 0.087 0.1 8 0.1396 0.139 0.3 10 0.1745 0.1736 0.5 1 0.094 0.079 0.7 15 0.618 0.588 1.1 18 0.314 0.3090 1.6 0 0.3491 0.340.0 0.3840 0.3746.4 5 0.4363 0.46 3.1 8 0.4887 0.4695 3.9 30 0.536 0.5000 4.5 3 0.5585 0.599 5.1 35 0.6109 0.5736 6.1 <1% % <5% m nge <15º 1

Phy Penuum O τ θ O θ mg mg enθ mg mg oθ τ m g τ I α I α mg enθ retorng θ mg + enθ 0 t I

θ mg + enθ 0 t I SH Equton. θ mg Sm nge + θ 0 t I ω mg I T π I mg ω Exme. homogenou of ru R 0 m hng from n very ner t ege. The ote wth m mtue. Wht the ero of the oton (negetng ny frton fore)? R 1 I mr + m 1 mr + mr 3 mr mg T I π π mg 3 mr mgr π 3 R g 3 0.0 π 1.1 9.80 3

ETRES O HRONI OTION 1º There retorng fore (or retorng torque) rety roorton to ement. º The ytem exee the equbrum oton, n from tht moment the retorng fore ten to en t bk to tht equbrum oton. 3º Whenever m frton fore re reent, the movement ow own tte by tte (me oton) 4º Whenever the frton fore re bg enough, the movement n our wthout ny oton (overme hrmon moton). 5º It obe to nfuene over the movement by n extern fore (rven hrmon moton). 4

Energy n hrmon moton x x kx W x kx x W x x 1 kx x kx x o 0 Potent energy: W 1 kx 5

KINETI ENERGY POTENTI ENERGY ENERGY E 1 1 1 E & m ω en ( ωt + δ ) mv mx 1 1 1 kx k o ( ω t + δ ) m ω o ( ωt + δ ) + 1 m ω { en ( ωt + δ ) + o ( ωt + δ )} 1 m ω ω 1 k k m 6

Dme hrmon moton x t 0 + γ& x + ω x x 0 R m v x& γ ω 0 x t + m b m k m R kx R bv bx& x kx bx& m t x b k + x + x 0 & t m m 7

x + γ& x + ω0 x 0 t orm of outon γt x ex o( ω t + δ ) γ k b ω ω0 4 m 4m Quty ftor ω Q 0 γ y oω0 t ω 0 0.5 r/ δ 0 0 10 0 30 40 50 y ± ex( γt / ) γ - 0.05 Q nree, the energy of the otor te owy 1 Q y ex( γt / ) oωt 0.5 0.05 ω 10 γ ω 0 4 8 t ()

rt mng uno γt x ex o( ω t + δ ) γ ω 0 4 γ - 0.05 1 γ k b ω ω0 4 m 4m There no oton 0 10 0 30 40 50 60 70 80 90 100 9

htt://www.hy.rutger.eu/ugr/193/eture/exme114.t 30