Research Article Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic Methods

Similar documents
Magnetotelluric (MT) Method

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

ERDC/GSL TN-14-1 August 2014 Electromagnetic Induction Survey of the Mississippi River in Cleveland, Mississippi

Research Article Theoretical Study on the Flow Generated by the Strike-Slip Faulting

GEOMAGNETICALLY INDUCED CURRENTS IN A BRAZILIAN POWER NETWORK OVER THE SOLAR CYCLES 23 AND 24

Electromagnetic Fields About a Moving Magnetic Dipole: Implications for Marine Controlled Source Electromagnetic Systems

Research Article Merge-Optimization Method of Combined Tomography of Seismic Refraction and Resistivity Data

Research Article A Quantitative Assessment of Surface Urban Heat Islands Using Satellite Multitemporal Data over Abeokuta, Nigeria

Geophysical Applications GPR Ground Penetrating Radar

CHAPTER 9 ELECTROMAGNETIC WAVES

Consider a Geonics EM31 with the TX and RX dipoles a distance s = 3 m apart.

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves

Dielectric permittivity and resistivity mapping using high-frequency, helicopter-borne EM data

Research Article Dual-Domain Transform for Travelling Wave in FRFT Domain

ANALYSIS OF LOCALIZED HIGH MAGNETIC SUSCEPTIBILITY ZONES AT JEFFERSON PROVING GROUND, INDIANA

GLE 594: An introduction to applied geophysics

Low induction number, ground conductivity meters: a correction procedure

Fast computation of Hankel Transform using orthonormal exponential approximation of complex kernel function

Effects of Surface Geology on Seismic Motion

Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients

Quasi-static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth s Surface

Geophysics for Environmental and Geotechnical Applications

Site Characterization & Hydrogeophysics

Magnetic Leakage Fields as Indicators of Eddy Current Testing

Seismic processing of numerical EM data John W. Neese* and Leon Thomsen, University of Houston

Geophysical mapping and imaging of soil structures: basic overview

Inductive source induced polarization David Marchant, Eldad Haber and Douglas W. Oldenburg, University of British Columbia

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Research Article Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

Research Article Quasilinearization Technique for Φ-Laplacian Type Equations

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order

Calculating Electric Fields that drive Geomagnetically Induced Currents

Research Article Remarks on Null Geodesics of Born-Infeld Black Holes

ELECTROMAGNETIC FIELD OF A HORIZONTAL IN- FINITELY LONG MAGNETIC LINE SOURCE OVER THE EARTH COATED WITH A DIELECTRIC LAYER

A Brief Introduction to Magnetotellurics and Controlled Source Electromagnetic Methods

ASSESSMENT REPORT N 0. REPORT ON HORIZONTAL COPLANAR LOOP ELECTROMAGNETIC SURVEY HOUSTON AREA OF BRITISH COLUMBIA AQUITAINE COMPANY OF CANADA DURING

Geophysics Course Introduction to DC Resistivity

Detecting the Weathering Structure of Shallow Geology via for Ground-Penetrating Radar

Research Article Remarks on Asymptotic Centers and Fixed Points

SANDER GEOPHYSICS LW 42D13SW ISLE ST. IGNACE RICHMONl

Lecture 21 Reminder/Introduction to Wave Optics

CHANGING INCLINATION OF EARTH SATELLITES USING THE GRAVITY OF THE MOON

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

P16 Gravity Effects of Deformation Zones Induced by Tunnelling in Soft and Stiff Clays

Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time

Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

THEORETICAL ANALYSIS AND NUMERICAL CALCULATION OF LOOP-SOURCE TRANSIENT ELECTROMAGNETIC IMAGING

Antennas and Propagation

POTASH DRAGON CHILE GEOPHYSICAL SURVEY TRANSIENT ELECTROMAGNETIC (TEM) METHOD. LLAMARA and SOLIDA PROJECTS SALAR DE LLAMARA, IQUIQUE, REGION I, CHILE

Research Article SPH Simulation of Acoustic Waves: Effects of Frequency, Sound Pressure, and Particle Spacing

Research Article A Note on the Central Limit Theorems for Dependent Random Variables

Determination of EM Coupling Effect in Dipole-Dipole Method : Complex Image Approach

Part IB Electromagnetism

Research Article The Microphone Feedback Analogy for Chatter in Machining

Electromagnetic fields and waves

ELECTRICAL RESISTIVITY TOMOGRAPHY

Theory of Electromagnetic Fields

Correspondence between the low- and high-frequency limits for anisotropic parameters in a layered medium

Research Article A Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method

International Journal Geology and Mining Vol. 4(1), pp , March, ISSN: XXXX-XXXX

Geophysical Investigation of the Old Gaborone Dumpsite, Botswana SHEMANG, E M; MOLWALEFHE, L; CHAOKA, TR; MOSWEU E; NONDO, M

Chapter 9. Electromagnetic waves

Research Article Matched Asymptotic Expansions to the Circular Sitnikov Problem with Long Period

INTRODUCTION TO APPLIED GEOPHYSICS

Research Article Some Generalizations of Fixed Point Results for Multivalued Contraction Mappings

Research Article Bounds of Solutions of Integrodifferential Equations

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

Electromagnetic Surveying of Brookhaven National Laboratories, Upton, New York

What can I do with a major in Earth Information Science?

Research Article The Numerical Solution of Problems in Calculus of Variation Using B-Spline Collocation Method

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

Research Article Variation of the Equator due to a Highly Inclined and Eccentric Disturber

Kimmo Silvonen, Transmission lines, ver

Magnetic Force on a Moving Charge

III. Spherical Waves and Radiation

Achieving depth resolution with gradient array survey data through transient electromagnetic inversion

PART A: Short-answer questions (50%; each worth 2%)

Special Section Marine Control-Source Electromagnetic Methods

1 i I.; :<7 6EOLOGICAL BRANCH ASSESSMENT REPORT HLEM, VLF-EM AND MAGNETOMETER TEST SURVEY ON THE ARC PROPERTY FOR SURVEY BY SJ GEOPHYSICS LTD.

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS

Research Article A Generalization of a Class of Matrices: Analytic Inverse and Determinant

Research Article Two Different Classes of Wronskian Conditions to a (3 + 1)-Dimensional Generalized Shallow Water Equation

AND HORSEFLY PROSPECTS, N.W. BRITISH COLUMBIA NTS, 103H/ll, 14 FOR ATNA RESOURCES LTD DELTA GEOSCIENCE LTD

Chapter 7. Time-Varying Fields and Maxwell s Equations

Research Article Approximation Algorithm for a System of Pantograph Equations

MT Prospecting. Map Resistivity. Determine Formations. Determine Structure. Targeted Drilling

Research Article Analytical Approach to Polarization Mode Dispersion in Linearly Spun Fiber with Birefringence

Electromagnetic (EM) Waves

Seismic wavepropagation concepts applied to the interpretation of marine controlled-source electromagnetics

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article Stability Switches and Hopf Bifurcations in a Second-Order Complex Delay Equation

Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations

Research Article Parametric Evaluations of the Rogers-Ramanujan Continued Fraction

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

INTERACTION OF LIGHT WITH MATTER

Application of Ground Penetrating Radar for hydro-geological study

Transcription:

ISRN Geophysics Volume 2013, Article ID 720839, 4 pages http://dx.doi.org/10.1155/2013/720839 Research Article Error Analysis in Measured Conductivity under Low Induction Number Approximation for Electromagnetic Methods George Caminha-Maciel 1,2 and Irineu Figueiredo 1,3 1 Observatório Nacional (ON), MCT, Rua General JoséCristino77,20921-400RiodeJaneiro,RJ,Brazil 2 Universidade Federal do Pampa (UNIPAMPA), Avenida Pedro Anunciação s/n, 96570-000 Caçapava do Sul, RS, Brazil 3 Universidade Estadual do Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, 20550-900 Rio de Janeiro, RJ, Brazil Correspondence should be addressed to George Caminha-Maciel; caminha.maciel@unipampa.edu.br Received 28 August 2013; Accepted 5 November 2013 Academic Editors: G. Chisham, A. De Santis, G. Mele, and A. Tzanis Copyright 2013 G. Caminha-Maciel and I. Figueiredo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present an analysis of the error involved in the so-called low induction number approximation in the electromagnetic methods. In particular, we focus on the EM34 equipment settings and field configurations, widely used for geophysical prospecting of laterally electrical conductivity anomalies and shallow targets. We show the theoretical error for the conductivity in both vertical and horizontal dipole coil configurations within the low induction number regime and up to the maximum measuring limit of the equipment. A linear relationship may be adjusted until slightly beyond the point where the conductivity limit for low induction number (B =1) is reached. The equations for the linear fit of the relative error in the low induction number regime are also given. 1. Introduction The induction method consists basically in determining subsurface rock conductivities with the help of electromagnetic fields generated by a coil at the Earth s surface and by catching the response to this field from the conducting media under surface by using a reception coil [1 3]. From the Maxwell equations, in particular the Faraday induction law applied to an infinite homogenous half-plane, thesubsurfacerockconductivitycanbeestimatedthrough the ratio between the magnetic field measured in the receiving coil and the magnetic field produced at the transmission coil with both at surface. Then we can take laterally distributed measurements along a transect for identifying conductivity-related anomalies. We can also get information on the vertical conductivity structure by varying the coil s dipole configurations (vertical dipole or horizontal dipole) as well as by increasing the instrument height. This information is very useful in several geophysical problems as, for example, water prospecting or mapping pollution plumes. The basic model for both configurations is described in Figure 1 where a transmission coil Tx with a given alternate electric current at a given frequency is located on the terrain (assumedtobeanuniformsemiplane)andareceivingcoil Rx is located at a short distance s fromtx.thetimevariation of the magnetic field H p, called primary magnetic field, produced by the electric current in the transmission coil generates a small alternate current in the soil. This electric current, on its turn, produces a magnetic field H s, called secondary field, which can be measured at the receiving coil together with the primary field. In general, the secondary magnetic field H s is a complicated function of the distance between coils s,ofthemagnetic permeability of the medium μ which will be considered exactly the same as for vacuum μ 0 (4π 10 7 A m) of the angular frequency of the oscillatory electric current ω, and of the soil conductivity σ. Under well-established conditions, technically known as operation with low values of induction number, the secondary magnetic field H s becomes a simple

2 ISRN Geophysics 2. Methods Tx Vertical magnetic dipole Rx Tx Rx Horizontal magnetic dipole Figure 1: Representation of the transmission (Tx) and reception (Rx) coils for both the vertical and the horizontal dipole configurations. function of these variables when we consider only the quadrature component: H s ωμσ H p 4 s2. (1) This result can be used when coils are in the vertical or horizontal dipole orientations. Actually, these two situations are described by different sets of equations for the secondary field; however, these equations give the same result for the component in quadrature of the ratio between the primary and secondary fields under low induction number conditions. In order to understand the induction number we need to define the electromagnetic skin depth δ: δ=( 2 ωμσ ) 1/2, (2) whichisequaltothedistanceinaconductingmediuman electromagnetic front wave has to travel in order to reduce the amplitude to 1/e( 37%) of its value outside the conducting medium. The induction number B describes the distance between the transmission coil and the reception coil s in units of skin depth δ: B= s δ. (3) The recent literature contains some debate on which values of B (and consequently σ) are valid for low induction number approximations [4, 5]. It also contains suggested corrections for nonzero height dependence and nonlinear departure for higher values of conductivity even above the low induction number regime [4]. In this work we introduce an error analysis for the induction method taking as a starting point the set of equations given by McNeill [1] for the field ratios on both coil dipole configurations. We also consider zero elevation of the coils and, as in Beamish [4], we discard medium magnetic and dielectric components as we are working in frequencies lower than 15 khz. Those equations represent the ratio between primary and secondary fields as the response of a homogeneous earth. We calculate the relative difference between this conductivity value and that obtained through the low induction number approximation. The equations for the primary and secondary field ratios for vertical and horizontal dipole configurations as given by McNeill [1]are H p ) V 2 = (γs) 2 {9 {9+9 (γs)+4 (γs)2 +(γs) 3 } e γs }, ) =2 {1 3 H p H (γs) 2 +[3+3 (γs)+(γs)2 ] where γ= (iπμ 0 σ), π=2πf, f = frequency (Hz), μ 0 =permeabilityoffreespace, i= 1. e γs (4) (γs) 2 }, (5) Expressions (4) and(5) are multivalued functions of the conductivity, frequency, and intercoil spacing, and as functions of the complex exponential i they have several branches in the complex plane. Therefore, as a matter of simplification, the induction number, a nondimensional parameter defined as the ratio between intercoil spacing and skin depth, is introduced, which will act as a conformal map simplifying equations. To do this we begin by writing x=iγsas a function of the induction number B = s/δ: Remembering that we have x= 2 i B. (6) (1 i) 2 = 2i= 2 i, (7) x=(1 i) B. (8) By substituting in (4) the following expression for the vertical dipole configuration comes out: ) =h H V p V = 18 (1 i) 2 B 2 [1 (1 (1 i) B+4 9 (1 i)2 B 2 1 9 (1 i)3 B 3 )e (1 i)b ]. (9)

ISRN Geophysics 3 As then (1 i) 2 = 2i, (1 i) 3 = 2(1+i), (10) h V = 9i B 2 [1 (1 B + ib 8 9 ib2 + 2 9 B3 + 2 9 ib3 )e B e ib ], (11) and doing e ib = cos B isin B,itfollowsthat h V = 1 B 2 [9i + [(9B 8B2 +2B 3 ) (9 9B + 2B 3 )i] e B [cos B isin B]]. By taking only the quadrature of h we have Qh V = 1 B 2 [9 (9B 8B2 +2B 3 )e B sin B (9 9B+2B 3 )e B cos B]. (12) (13) Similarly, for the horizontal dipole configuration we obtain Qh H = 1 B 2 [ 3 + (3B 2B2 )e B sin B+(3 3B) e B cos B]. (14) The imaginary part (quadrature term) is related to the conductivity measurements under low induction number conditions.themagnitudeofthesecondarymagneticfield is now directly proportional to the conductivity and its phase leads the primary field to 90. Under low induction number (B 1) the expressions (4) and(5) can be expanded in a power series, and considering only the first terms the quadrature part (neglecting the in-phase term) can be written as [1] ) = ) = iσμω H p H V p 4 s2. (15) H Thisisthelowinductionnumberapproximationkey expression which leads to the conductivity value from the equipment readings. The induction number B is a function of the material conductivity σ for a given frequency ω and the separation between coils s. Furthermore,B is a function of the conductivity σ and of the product (f 1/2 s). For the EM34-3 and EM34-X (Geonics Ltd.) equipment settings all different possibilities of frequency and intercoil spacing give the same product f 1/2 s(800 ms 1/2 m 1/2 ). Since the low induction number condition (B 1) implies that we should have σ 2/μωs 2, then, considering the EM34-3 instrument that works in the frequencies 6400, 1600, and 400 Hz with distances between coils of 10, 20, and 40 m, respectively, it comes out that the value for the soil conductivity measured by this instrument should be quite lower than 400 ms/m. We define the error associated with the low induction number approximation as the theoretical deviation from the exact model which is the electromagnetic response for a homogenous half-plane as follows: ε= σ σ. (16) σ From the induction number definition we have and from (15) is σ= 2B2 μωs 2, (17) σ = 4 (Qh) μωs 2. (18) In this way, the error associated with the approximation ε= 4 (Qh) 2B2 2 (Qh) 2B 2 = B 2 1. (19) Substitutingthose Qh values in expression (19)weobtain the relative theoretical error for the approximation. Figure 2 represents the plot of the error for the whole conductivity range (and a little further) mostly used in practical applications (10 2 ms/m 10 3 ms/m) andshowsthedeviationfrom the linear response. We add two vertical black lines marking the limits of interest: the low induction number limit (B =1) and the usual limit of the equipment (1000 ms/m). From the studied lower limit through the whole low induction number regime (considering its limit as 400/10 = 40 ms/m) the relationship is clearly linear, but it also can easily be extended to 100 ms/m or even to 400 (ms)/m (B = 1), as it is shown in Figure 2. Figure 3 shows the absolute apparent conductivity as a function of true conductivity until the linear response limit is surpassed. McNeill [1]showsthisplotforanarrowerrange of conductivity values, and therefore the departure from linearity was not clear. The same linear behaviour is seen in the apparent conductivity (Figure 3) for vertical and horizontal dipole configurations, as seen by the fitted straight line to the logarithmic scaled error curves on the low induction number regime (10 2 ms/m 40 ms/m) given by log (ε) ={ 0.4915 log (σ V) + 0.7321 Vertical dipole 0.4959 log (σ H ) + 0.4296 Horizontal dipole }, (20) where ε is given in percent (%) and σ in ms/m. 3. Conclusions It is well known that the vertical dipole configuration is more sensitive to conductivity anomalies in deep, while the horizontal one is more sensitive to near surface conductivity

4 ISRN Geophysics Error (%) 10 3 10 2 10 1 10 0 10 1 10 2 10 3 10 4 10 2 10 1 10 0 10 1 10 2 10 3 100% 50% 25% Ground conductivity (ms/m) Error H Error V Figure 2: Relative percent error (%) as a function of conductivity (ms/m). It also shows error isolines for the error levels of 100%, 50%, and 25%. The vertical black lines mark two main limits: induction number equals to one (B =1, for which σ 400 ms/m) and the EM34 instrument limit of 1000 ms/m. Absolute apparent conductivity (ms/m) 10 4 10 3 10 2 10 1 10 0 10 1 10 2 10 1 10 0 10 1 10 2 10 3 Ground conductivity (ms/m) could depart from the expected model leading to very high errors in the estimated conductivity due to the proximity of the function singularity. It is worth noting that the determination of these bounds depends on the configurations (operation frequency and intercoil spacing) of the considered instrument. Acknowledgments This work was supported by the Brazilian agency CNPq through a postdoctoral scholarship to George Caminha- Maciel. Thanks are due to E. La Terra for the valuable discussions and M. Ernesto for helping in improving the paper. Any use of product names is for descriptive purposes only and does not imply any endorsement. References [1] J. D. McNeill, Electromagnetic terrain conductivity measurements at low induction numbers, Technical Note TN-6, Geonics Ltd., Mississauga, Canada, 1980. [2] G. V. Keller and F. C. Firschknecht, Electrical Methods in Geophysical Prospecting, Pergamon, New York, NY, USA, 1966. [3] J. R. Waitt, A note on the electromagnetic response of a stratified Earth, Geophysics,vol.27,pp.382 385,1962. [4] D. Beamish, Low induction number, ground conductivity meters: A correction procedure in the absence of magnetic effects, Applied Geophysics,vol.75,no.2,pp.244 253,2011. [5] J.B.Callegary,T.P.A.Ferré,andR.W.Groom, Verticalspatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments, Vadose Zone Journal, vol. 6, no. 1, pp. 158 167, 2007. Horizontal Vertical Linear trend Figure 3: Apparent conductivity versus true conductivity in ms/m until slightly above the EM34 instrument limit. The vertical black lines mark two main limits: induction number equals to one (P = 1, for which σ 400 ms/m) and the EM34 instrument limit of 1000 ms/m. This curve shows a slight departure from the linear behaviour after the low induction number limit ( 40 ms/m) until the limit for B=1( 400 ms/m) and a strong departure from the linear behaviour after that. variations [1]. However, if we consider only the measured conductivity values, the error is lower for the horizontal than for the vertical dipole configuration as noted in Figure 2. For both configurations conductivity converges to the same values when conductivity tends to zero. An approximately linear tendency can be observed over the whole low induction number range and up to 400 ms/m. Abovethisvaluetherearestrongdeviationsfromlinearity indicating that we are close to singularities of the complex function (not only the quadrature term). Despite a correction procedure suggested by Beamish [4], we believe that under statistical fluctuations of the measured signal the response

International Ecology Geochemistry Mining The Scientific World Journal Scientifica Earthquakes Paleontology Journal Petroleum Engineering Submit your manuscripts at Geophysics International Mineralogy Geological Research Geology Climatology International Meteorology International Atmospheric Sciences International Oceanography Oceanography Applied & Environmental Soil Science Computational Environmental Sciences