Hydrocarbon reservoir volume estimation using 3-D seismic and well log data over an X-field, Niger Delta Nigeria

Similar documents
Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria.

FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA

Evaluation of Hydrocarbon Volume in TRH Field, Onshore Niger Delta, Nigeria

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures

RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL LOGS DATA (A CASE STUDY OF NIGER DELTA)

Available online Journal of Scientific and Engineering Research, 2018, 5(1):1-10. Research Article

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study*

Evaluation of Hydrocarbon Prospect of Amu Field, Niger-Delta, Nigeria

ONLINE FIRST(NOT Peer-Reviewed)

GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN NIGER DELTA BASIN OF NIGERIA

Rock-Physics and Seismic-Inversion Based Reservoir Characterization of AKOS FIELD, Coastal Swamp Depobelt, Niger Delta, Nigeria

Petrophysical Charaterization of the Kwale Field Reservoir Sands (OML 60) from Wire-line Logs, Niger Delta, Nigeria. EKINE, A. S.

SEISMIC AND PETROPHYSICAL ATTRIBUTES OF RESERVOIRS IN EBI OIL FIELD, NIGER DELTA

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination

Available online Journal of Scientific and Engineering Research, 2018, 5(6): Research Article

Keywords: Exploration; reservoir structure; stratigraphic trap; uncertainty; petrophysical property.

Estimation of Water Saturation Using a Modeled Equation and Archie s Equation from Wire-Line Logs, Niger Delta Nigeria

Applications of 3-D Structural Interpretation and Seismic Attribute Analysis to Hydrocarbon Prospecting Over X Field, Niger-Delta

International Journal of Petroleum and Geoscience Engineering Volume 04, Issue 01, Pages 58-65, 2016

The Integrated Seismic Reservoir Characterization (ISRC), Study in Amboy Field of Niger Delta Oil Field Nigeria

MODEL COMPACTION EQUATION FOR HYDROSTATIC SANDSTONES OF THE NIGER DELTA.

Plane Versus Elastic Wave AVO Anisotropic Synthetic Modeling in Derby Field, Southeastern Niger Delta

SEISMIC AND PETROPHYSICAL CHARACTERIZATION OF SELECTED WELLS, NIGER DELTA

Hydrocarbon Potentials of Baze Field, Onshore Niger Delta, Nigeria: Petrophysical Analysis and Structural Mapping

Continuous Wavelet Transform Based Spectral Decomposition of 3d Seismic Data for Reservoir Characterization in Oyi Field, se Niger Delta

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand

RESERVOIR EVALUATION OF T-X FIELD (ONSHORE, NIGER DELTA) FROM WELL LOG PETROPHYSICAL ANALYSIS

Detecting and Predicting Over Pressure Zones in the Niger Delta, Nigeria: A Case Study of Afam Field.

3-D Seismic Interpretation and Structural Analysis of Ossu Oil Field, Northern Depobelt, Onshore Niger Delta, Nigeria.

SEISMIC ATTRIBUTES AND PETROPHSICAL PROPERTIES OF IBA FIELD, NIGER DELTA, NIGERIA

SEISMIC ATTRIBUTES ANALYSIS FOR RESERVOIR CHARACTERIZATION; OFFSHORE NIGER DELTA

Reservoir Property Distribution and Structural Styles Analysis of OML D Regional Line, Onshore Niger Delta Basin

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Imaging complex structure in seismic reflection data using prestack depth migration: case study of Olua area of the Niger Delta, Nigeria

Pore Pressure Prediction Using Offset Well Logs: Insight from Onshore Niger Delta, Nigeria

Calibration of Gardner coefficient for density velocity relationships of tertiary sediments in Niger Delta Basin

Growth Fault History Analysis of an Oil Field, Niger Delta, Nigeria

Lithofacies Characterization of Sedimentary Succession from Oligocene to Early Miocene Age in X2 Well, Greater Ughelli Depo Belt, Niger Delta, Nigeria

Overpressure Prediction In The North-West Niger Delta, Using Porosity Data

Bulletin of Earth Sciences of Thailand. Controls on Reservoir Geometry and Distribution, Tantawan Field, Gulf of Thailand.

EVALUATION OF SEISMIC ATTRIBUTES OF APO FIELD, ONSHORE NIGER DELTA, SOUTHERN NIGERIA

FIELD DEVELOPMENT PLANS USING SEISMIC RESERVOIR CHARACTERIZATION AND MODELING; A NIGER DELTA 3D CASE STUDY

Research Article 3D Spatial Distribution of Reservoir Parameters for Prospect Identification in ''Bizzy'' Field, Niger Delta

Formation evaluation of an onshore appraisal well KG-5, green field, Niger Delta, Nigeria

Integration of Well Log Analysis and 3-D Seismic in Reserve Estimation of Hydrocarbon Bearing Sands in Q-Field, Niger-Delta Nigeria

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Well Logs 3 D Seismic Sequence Stratigraphy Evaluation of Holu Field, Niger Delta, Nigeria

Application of multilayer perceptron neural network and seismic multiattribute transforms in reservoir characterization of Pennay field, Niger Delta

DHI Analysis Using Seismic Frequency Attribute On Field-AN Niger Delta, Nigeria

S. Mangal, G.L. Hansa, S. R. Savanur, P.H. Rao and S.P. Painuly Western Onshore Basin, ONGC, Baroda. INTRODUCTION

Overpressure/ Depositional Analysis of Parts of Onshore (X-Field) Niger Delta Basin Nigeria, Based on Well Logs Data.

Multiattributes and Seismic Interpretation of Offshore Exploratory Block in Bahrain A Case Study

Reservoir characterization and by-passed pay analysis of philus field in Niger delta, Nigeria

Apache Egypt Companies. The introduction of 3D seismic techniques three decades ago greatly enhanced our

Petrophysical Analysis and Sequence Stratigraphy Appraisal from Well logs of Bobo field, South-Eastern, Niger Delta

Reservoir properties and sealing potentials of the Akani Oil Field structures, Eastern Niger Delta, Nigeria

SAND DISTRIBUTION AND RESERVOIR CHARACTERISTICS NORTH JAMJUREE FIELD, PATTANI BASIN, GULF OF THAILAND

Source Rock Analysis Using Well Logs In Western Niger Delta

An Integrated Approach to Volume of Shale Analysis: Niger Delta Example, Orire Field

HIGH HYDROCARBON PROSPECT IN NIGER DELTA COMPLEX, NIGERIA

Seismic Inversion for Reservoir Characterization in Komombo Basin, Upper Egypt, (Case Study).

Int. J Sci. Emerging Tech. Vol-2 No. 3 December, 2011

Static Reservoir Modeling Using Well Log and 3-D Seismic Data in a KN Field, Offshore Niger Delta, Nigeria

Reservoir Characterization using AVO and Seismic Inversion Techniques

Anisotropic Avo Analysis for Reservoir Characterization in Derby Field Southeastern Niger Delta

Oil and Natural Gas Corporation Ltd., VRC(Panvel), WOB, ONGC, Mumbai. 1

Integrated well log and 3-D seismic data interpretation for the Kakinada area of KG PG offshore basin

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 2 Issue 9, September 2015.

Trapping Mechanisms along North Similan and Lanta Trends, Pattani Basin, Gulf of Thailand

Quantitative Modeling of the Architecture and Connectivity Properties of Reservoirs in Royal Field, Niger-Delta.

AnalyticalDeterminationofSubsurfaceTemperatureusingTwoLayersModelinPartofNigerDeltaSedimentaryBasinNigeria

Interpretation and Reservoir Properties Estimation Using Dual-Sensor Streamer Seismic Without the Use of Well

Deepwater Niger Delta fold-and-thrust belt modeled as a critical-taper wedge: The influence of a weak detachment on styles of fault-related folds

Seismic Inversion on 3D Data of Bassein Field, India

An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin

Rock physics and AVO applications in gas hydrate exploration

International Research Journal of Interdisciplinary & Multidisciplinary Studies (IRJIMS)

EGAS. Ministry of Petroleum

Feasibility and design study of a multicomponent seismic survey: Upper Assam Basin

Velocity Modelling Using Well Data: Depth Conversion A Case Study Of K-Field, Onshore Niger Delta Area

Fault seal analysis: a regional calibration Nile delta, Egypt

Quantifying Bypassed Pay Through 4-D Post-Stack Inversion*

EGAS. Ministry of Petroleum

Risk Factors in Reservoir Simulation

The Stratigraphic Trap in the Benchamas Field Pattani Basin, Gulf of Thailand

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

PRELIMINARY ESTIMATION OF THERMAL CONDUCTIVITY IN BORNU-CHAD BASIN, NIGERIA

Depositional environment and reservoir quality assessment of the Bruks Field, Niger Delta

OTC OTC PP. Abstract

Process, Zeit Bay Fields - Gulf of Suez, Egypt*

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

Bulletin of Earth Sciences of Thailand

Porosity- Depth Estimation in Clastic Rocks from Sonic Logs in Chad Basin, Nigeria

Amplitude variation with offset AVO. and. Direct Hydrocarbon Indicators DHI. Reflection at vertical incidence. Reflection at oblique incidence

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

Relinquishment Report

Seismic Attributes and Their Applications in Seismic Geomorphology

Transcription:

J Petrol Explor Prod Technol (2015) 5:453 462 DOI 10.1007/s13202-015-0152-3 ORIGINAL PAPER - EXPLORATION GEOPHYSICS Hydrocarbon reservoir volume estimation using 3-D seismic and well log data over an X-field, Niger Delta Nigeria C. N. Nwankwo M. Ohakwere-Eze J. O. Ebeniro Received: 20 April 2013 / Accepted: 2 January 2015 / Published online: 28 January 2015 The Author(s) 2015. This article is published with open access at Springerlink.com Abstract This study delineates and maps the hydrocarbon-bearing reservoir HD2000 from surface seismic sections and well logs within the depth interval of 5,700 ft (1,737 m) and 6,200 ft (1,890 m). The objective is to establish the geometry, reservoir distribution, delineate hydrocarbon-bearing reservoirs from surface seismic sections and well logs. In this process, a 3-D structural interpretation and estimation of the volume of hydrocarbon in place of the reservoirs was carried out. Well-to-seismic tie revealed that hydrocarbon-bearing reservoirs were associated with direct hydrocarbon indicators (bright spots and dim spots) on the seismic sections. Two horizons were studied (HD2 and HD2_version2) and several faults mapped for the purpose of carrying out 3-D subsurface structural interpretation. This was used in generating the time structure maps. From the maps, it was observed that the principal structure responsible for hydrocarbon entrapment in the field was the anticlinal structure at the center of the field which tied to the crest of the rollover structure seen on the seismic sections. Check shots from the control well were used to create a velocity model from which the time to depth conversion was made. Horizon slice taken shows the reservoir spans a thickness of 400 ft. Direct hydrocarbon indicators were used to map the reservoir boundary. They were seen on the reflection amplitude maps as high amplitude zones (bright spots) and low amplitude zones (dim spots). Reservoir area extent estimated by square grid C. N. Nwankwo (&) J. O. Ebeniro Physics Department, University of Port Harcourt, Port Harcourt, Nigeria e-mail: cyrilnn@yahoo.com M. Ohakwere-Eze Physics Department (Earth Sciences), Salem University, Lokoja, Nigeria template method revealed that reservoir HD2000 had an area estimate of 5.29 km 2. The results show the effectiveness of the estimation techniques in the lateral prediction of reservoir properties, discriminating litho-fluid and determining the porosity, saturation, net-to-gross ratio, and moreover the reserve volume. Hydrocarbon saturation varied between 0.64 and 0.65, while effective porosity varied between 0.31 and 0.32. Estimation of the volume of hydrocarbon in place revealed that the delineated reservoir HD2000 contained an estimate of 776,545,418.22 barrels (,460,855.4 cm 3 ) of hydrocarbon which shows great potential of considerable size. Keywords Hydrocarbon Reservoir Volume Seismic Well logs Structure Horizon Introduction Almost all oil and gas produced today comes from accumulations in the pore spaces of reservoir rocks like sandstone, limestone or dolomites. The amount of oil or gas contained in a unit volume of such a reservoir is the product of its porosity and the hydrocarbon saturation. To quantify the hydrocarbon in place of a reservoir, knowledge of the character and extent of such a reservoir is needed. Information required for volume analysis are the thickness, pore space, and areal extent of the reservoir (Ihianle et al. 2013). Other input parameters are shale volume, saturation, net to gross, and shale volume values (Edward and Santogrossi 1990). In the majority of reservoir development projects, the description of the reservoir is achieved through integrating well information and seismic data. The available well information provides calibration points and the lateral variations in the seismic

454 J Petrol Explor Prod Technol (2015) 5:453 462 attributes which provide details, on the distribution of the reservoir properties away from well control. This study is based on the use of wireline logs data and 3-D seismic data to analyze and estimate prospective reservoir volume of sand bodies in an oil field in the Niger Delta region of Nigeria. The objective is to determine the reservoir rock attributes and to use such valuable information to compute the reservoir volume of the study area. The reservoir geophysical parameters (porosity and hydrocarbon saturation) were computed for hydrocarbon pore volume (HCPV) determination; hence the existence of economically producible hydrocarbon reservoirs was established. Geologic setting of the study area The precise location of the study area was not disclosed in line with current practices by petroleum industries in Nigeria. However, the study area is located within the oil rich province of the Niger Delta (Fig. 1). The delta is a sedimentary structure formed as a complex regressive offlap of clastic sediments ranging in thickness from 9,000 to 12,000 m (Etu-Efeotor 1997). Only one petroleum system called the Tertiary Niger (Akata-Agbada) Petroleum System has been identified (Kulke 1995). The geology, stratigraphy, and structure of the Niger delta basin have been extensively discussed by several authors (Short and Stauble 1967; Merki 1970; Weber and Daukoru 1975; Avbovbo 1978; Evamy et al. 1978; Whiteman 1982; Owoyemi and Wills 2006; Bilotti and Shaw 2005). The Niger Delta basin is situated on the continental margin of the Gulf of Guinea between latitude 3 and 6 N and longitude 5 and 8 E. The areal extent of the Delta is about 75,000 km 2 with a clastic fill of about 12,000 m. The Niger Delta province is ranked the twelfth richest petroleum resources with 2.2 % of the world s discovered oil and 1.4 % of world s discovered gas by the US Geological Survey s World Energy Assessment (Klett et al. 1997). The Niger Delta consists of three broad formations, the Benin, Agbada, and Akata Formations (Short and Stauble 1967). The Benin Formation is the shallowest of the sequence and consists predominantly of fresh water-bearing continental sands and gravels. The Agbada Formation underlies the Benin Formation and consists primarily of sand and shale, and is of fluviomarine origin. It is the main hydrocarbon-bearing window. The formation is about 3,700 m thick and consists of Paralic Siliclastics; it forms a good representation of the actual deltaic sequence. This is the seat of most oil reservoirs and center of over pressures. The Akata Formation is composed of shales, clays, and silts and lies at the base of the Niger Delta Sequence. It is of marine origin. They contain a few streaks of sand, possibly of turbiditic origin. The thickness of this sequence is not known for certain, but may reach 7,000 m in the central part of the delta (Short and Stauble 1967). Fig. 1 Map of Nigeria, showing the study area ( 2001 Microsoft Corp)

J Petrol Explor Prod Technol (2015) 5:453 462 455 Fig. 2 Base map of the study area Methodology Several steps of analysis were adopted to evaluate the sand bodies of the area under investigation. Multiple 3-D postseismic and digital well log data in LAS format were provided for three wells from an x-oil field offshore Niger Delta. The data used in this work are well log data and multiple 3-D post-stack seismic data from an offshore area in Niger Delta oil field. The data consist of suites of well logs from wells A, B, C, a base map (Fig. 2) and a 3-D seismic data. The wire line log data comprises of sonic log, density, self potential (SP), resistivity log, caliper log, porosity log, shale volumetric log, and gamma ray log (Table 1). The zone of interest is typically a sand/shale/ sand sequence. HAMPSON RUSSEL software was used for data analysis. The program has the capacity of integrating Table 1 Table showing available log suite for each well Well A Well B Well C Density Density Density Gamma ray Gamma ray Gamma ray P-wave P-wave P-wave Resistivity Resistivity Resistivity Caliper Caliper Porosity Shale volume geology with Well and seismic data. The composite geophysical well logs, seismic sections, and check shot data were imported into the interactive HAMPSON RUSSELL workstation. The relevant wireline log signatures were employed to identify hydrocarbon-bearing reservoirs and the work flow adopted is according to the chart in Fig. 3. Volume estimation In calculating the volume of hydrocarbon in place, the gross rock volume, net-to-gross (n/g) ratio, porosity, and the hydrocarbon saturation of each zones were considered. The volume of hydrocarbon in place (hydrocarbon pore volume, HCPV) was calculated from Eq. 1 as used by Aly (1989): HCPV ¼ VUN=Gð1 S W Þ ð1þ Where V = Volume of hydrocarbon; which equals the product of reservoir area extent (A) and its thickness (h), U = Porosity, S W = water saturation, N/G = ratio of netto-gross thickness of the reservoir as obtained from the gamma ray logs or the sand volume within the two geological Horizons or markers. However N/G has been assumed to be 95 % due to the almost complete sand volume in the reservoir HD2000. Table 2 shows the model equations employed in computing other volumetric parameters.

456 J Petrol Explor Prod Technol (2015) 5:453 462 Fig. 3 Flow chart illustrating the methodology Table 2 Quick view of volumetric equations used in calculations Volume parameter equations and equalities Rock volume Pore volume Hydrocarbon pore volume Analysis of results Well log interpretation Preliminary study on the well logs revealed one hydrocarbon-bearing reservoir HD 2000 with top HD2_V2 and base HD2 within depth interval of 5,280 8,250 ft for Well A, 5,000 7,500 ft for Well B, and 4,000 8500 ft for Well C. The wells exhibit a dominantly shale/sand/shale sequence, typical of the Niger Delta formation. The wells were analyzed in terms of fluid type and lithology. Shale lithology was delineated by the high gamma ray value. Regions of low gamma ray, high resistivity and low water saturation are mapped as sand lithology, which are also regions of high hydrocarbon saturation. The reservoir mapped areas of very low GR, high porosity, and low water saturation (Figs. 4, 5, 6). Acoustic impedance volume V R = A * h V P = V R * u = A * h * u V HCPV = V P *(S HC ) * N/G = A * h * u * (1-S w )* N/G Where S HC = the hydrocarbon saturation of interest. The acoustic impedance volume shown in Fig. 7 is a cross section of the base seismic data with inserted inline number 5506. A reduction in the impedance is as a result of production effect in the reservoir. Low water saturation section can be seen within the reservoir; which is indicative of a hydrocarbon charge zone. The well locations exhibits relatively low acoustic impedance values within the square grid (Fig. 8). These low values of acoustic impedance are associated with hydrocarbon saturated sands; areas of high acoustic impedance are observed as a result of probable depleted zones (Fig. 9). As seen in Fig. 7, sandstone reservoir shows low velocity and low impedance. Checkshot from the control well was used to associate travel time (a measure of velocity) with each of a number of depths in the wells. Horizons HD2 and HD_version2 were tracked on these reflections, on both inlines and crosslines across the field to produce the time structure (isochron) maps. This then was used to produce and understand the velocity relationship between depths and two-way acoustic travel times (isopach map). The depth structure map generated revealed that for reservoir HD2000, the depth from the top (HD2_version2) to the bottom (HD2) is estimated 400 ft (121.92 m). Rock attribute slice The rock attribute slices were subsequently extracted from the impedance volume. Changes in the rock attributes were evaluated for probable hydrocarbon prospects. It was observed that the computed porosity estimate in reservoir HD2000 varied from 0.31 to 0.32 (Fig. 10). Also, the hydrocarbon saturation estimated in reservoir HD2000 varied from 0.64 to 0.65 (Fig. 11). Volumetric The total area of a reservoir and its thickness are of considerable importance in determining if a reservoir is a commercial one or not. The more the area and thickness of a reservoir the greater its potential for oil and gas accumulations. However, there are reservoirs that produce substantial amounts of hydrocarbons that are not of

J Petrol Explor Prod Technol (2015) 5:453 462 457 Fig. 4 Well A showing various log signatures and delineated HD2000 reservoir in black strip Fig. 5 Well B showing various log signatures and delineated HD2000 reservoir in black strip

458 J Petrol Explor Prod Technol (2015) 5:453 462 Fig. 6 Well C showing various log signatures and delineated reservoir in black strip Fig. 7 Cross section of acoustic impedance of a seismic base with sphere showing the reservoir considerable size. The surface area extent covered by the reservoir was estimated using the grid template method. Since the bright and dim spots are indicators of hydrocarbon presence, the lateral boundaries of these reservoirs were mapped from the amplitudes. The reflection amplitude maps were generated from horizons HD2 and HD2_version2 (Fig. 8) and the zone of anomalous high amplitude were used to map the boundaries of the reservoir

J Petrol Explor Prod Technol (2015) 5:453 462 459 Acous c impedance Shale Oil/Gas Sand Water sand Z1 Z2 Z3 Z1>Z2>Z3. The oil/gas sand decreases the acous c impedance contrasts rela onship that results in a dim spot. Fig. 8 Inverted acoustic impedance volume for slice HD2000 with a square grid template mapped on the wells Fig. 9 Volume display showing areas of low acoustic impedance signifying sand body about that depth Fig. 10 a Computed porosity (amplitude at HD2). b Computed porosity (amplitude at HD2_version2)

460 J Petrol Explor Prod Technol (2015) 5:453 462 Fig. 11 a Computed water saturation (amplitude at HD2_version2). b Computed water saturation (amplitude at HD2) Table 3 Results of Oil Volume Estimates for delineated Reservoir HD2000 HD2000 Area [m2] Thickness [ft] m Rock volume (VR) Effective porosity (u) Pore volume (VP) Water saturation (SW) Hydrocarbon saturation (SHC) Hydrocarbon [oil] in place [barrels] 5,290,000 (400) 121.92 644,956,800 0.31 199,936,608 0.35 0.65 776,545,418.22 Fig. 12 Typical seismic session showing horizon and faults across inline (they matched bright spots on seismic sections). The reservoir area extent estimation from the square grid method revealed that reservoir HD2000 covered an area of 5.29 km2. The detailed analysis is shown in Table 3. Structural interpretation A comprehensive geologic study of the prospect is necessary to increase the confidence and reliability of determined reservoir properties such as volume, porosity, and fluid saturations. Horizon and fault interpretations were carried out for subsurface structural interpretation. In all, a formation with marker HD2000 and three visible faults F1, F2 and F3 were mapped on seismic sections over the entire field (Fig. 12). Growth faulting dominates the structural styles which are interpreted to be triggered by slope instability. These faults form a back to back fault system that was interpreted to be walls or ridges of mobile shale piercing upward from beneath the depobelt. It displays no growth and it is a compensating fault for overburden extension. Regular spacing and simplicity of the structures is in line with the structural styles that

J Petrol Explor Prod Technol (2015) 5:453 462 461 characterize the depobelt of the Niger Delta rich hydrocarbon province (Rotimi et al. 2004). The productivity of a reservoir is determined through the identification of valid structural traps within which there exists a viable reservoir. The fault interpretation revealed several faults (F1, F2 and F3) which were mapped on the seismic sections and 3-D view representation of the reservoir, that corresponds to the growth and antithetic faults that exist on seismic section in Fig. 12. The possible petroleum trapping systems are the large roll over anticlines on the hanging wall of the thrusts which appears as dip-closed structures. Some of the closures have a dependency on fault components. In developing the structural pattern, 3-D imaging allows clear information upon which to base the faulting system (Fig. 13). The principal structure responsible for hydrocarbon entrapment in the field is a structural high located at the center of the field which probably corresponded to the crest of the roll over structure observed on the seismic sections. This was observed as fault assisted closures on the time structure map of the horizon. Structural highs are observed in the northeast and in the center of the field while structural lows are observed in the southwest. Faults F1, F2, and F3 act as good traps for the hydrocarbon accumulations in the reservoir at the center of the field. Also the fault on the inline corresponds to lines on the time (or depth) slice. Discussion The results of the study has shown the effectiveness of the estimation techniques in the lateral prediction of reservoir properties, discriminating litho-fluid and determining the porosity, saturation, net-to-gross ratio, and moreover the reserve volume. Well-to-seismic tie revealed that hydrocarbon-bearing reservoirs were associated with direct hydrocarbon indicators (bright spots and dim spots) on the seismic sections. Several faults were mapped out from the two studied horizons. This was used in generating the time structure maps. From the maps, it was observed that the principal structure responsible for hydrocarbon entrapment in the field was the anticlinal structure at the center of the field which tied to the crest of the rollover structure seen on the seismic sections. Check shots from the control well were used to create a velocity model from which the time Fig. 13 3-D volume display of the reservoir area

462 J Petrol Explor Prod Technol (2015) 5:453 462 to depth conversion was made. Horizon slice taken shows that the reservoir spans a thickness of 400 ft. Direct hydrocarbon indicators were used to map the reservoir boundary. They were seen on the reflection amplitude maps as high amplitude zones (bright spots) and low amplitude zones (dim spots). Reservoir area extent estimated from square grid template method revealed that reservoir HD2000 had an area estimate of 5.29 km 2. Hydrocarbon saturation varied between 0.64 and 0.65, while effective porosity varied between 0.31 and 0.32. These computed porosity values are consistent with what some authors have reported for the Niger Delta (Aigbedion et al. 2011; Edwards and Santogrossi 1990; Olowokere and Ojo 2011). Conclusion Reservoir characterization in the Niger Delta has led to a better understanding of subsurface structures which in turn has immensely helped delineate reservoirs, predict reservoir properties, and minimize cost. The integration of well and seismic data has provided insight to reservoir hydrocarbon volume which may be utilized in exploration evaluations and in well bore planning. The application of seismic inversion technology has resulted to better reservoir definition, improved resource estimates, and better reservoir management. Estimation of the volume of hydrocarbon in place revealed that the reservoir contained an estimate of 776545418.22 barrels of hydrocarbon. Acknowledgments The authors are grateful to Shell Petroleum Development Company (SPDC) Port Harcourt for providing the data set used for this research work. We also gratefully acknowledge Hampson Russel for granting licenses to use their analysis software in this study. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Aly SA (1989) Evaluation of petrophysical properties of reservoir rocks using well logging analysis in Abu Ghyaradig Basin, Western Egypt. Unpublished Ph.D. thesis, Faculty of science, kain Shams University, Cairo, Egypt Avbovbo AA (1978) Tertiary lithostratigraphy of Niger Delta. Am Assoc Pet Bull 62:295 300 Bilotti F, Shaw JH (2005) Deepwater Niger Delta fold and thrust belt modeled as a critical taper wedge: the influence of elevated basal fluid pressure on structural styles. AAPG Bull 89(11):1475 1491 Edwards JD, Santogrossi PA (1990) Summary and conclusions. In: Edwards JD, Santogrossi PA (eds) Diverjent/Passive Margin Basins. AAPG Memoir 48. AAPG Tulsa, pp 239 248 Etu-Efeotor JO (1997) Fundamentals of petroleum geology. Africana- Fep Publishers, Onitsha, Nigeria, pp 111 Evamy BD, Harembourne J, Kamerling P, Knaap WA, Molley FA, Rowlands PH (1978) Hydrocarbon habitat of the tertiary Niger Delta. AAPG Bull 62:1 39 Ihianle OE, Alile OM, Azi SO, Airen JO, Osuoji OU (2013) Three dimentional seismic/well logs and structural interpretation over X-Y field in the Niger Delta area of Nigeria. Sci Technol 3(2):47 54. doi:10.5923/j.scit.20130302.01 Klett TR, Ahlbrandt TS, Schmoker JW, Dolton JL (1997) Ranking of the world s oil and gas provinces by known petroleum volumes. U.S. Geological Survey Open-file Report-97 463. CD-ROM, pp 56 58 Kulke H (1995) Regional petroleum geology of the world. Part II: Africa, America, Australia and Antarctica, Berlin Gebruder Borntraeger, pp 143 172 Merki PJ (1970) Structural geology of the Cenozoic Niger Delta. J Geol 2(3):10 Olowokere MT, Ojo JS (2011) Porosity and lithology prediction in Eve Field, Niger Delta using compaction curves and rock physics models. Int J Geosci 2:366 372 Owoyemi AO, Willis (2006) Depositional patterns across syndepositional normal faults, Niger Delta, Nigeria. J Sediment Res 76:346 363 Rotimi OJ Ameloko AA Adeoye OT (2004) Int J Basic Appl sci IJBAS-IENS, 10 Short KC, Stauble AJ (1967) Online of the geology of the Niger Delta. Am Assoc Petro Geol Bull 51:761 779 Weber KJ, Daukoru EM (1975) Petroleum geology of the Niger Delta. Proceedings of the 9th World Petroleum Congress. Geology Applied Science Publishers, Ltd., London (2):210 221 Whiteman AJ (1982) Nigeria: Its petroleum geology: resources and potential 1 & 2. Graham and Trottan, London, p 394 References Aigbedion I, Aigbedion HO (2011) Hydrocarbon volumetric analysis using seismic and borehole data over Umoru field, Niger Delta- Nigeria. Int J Geosci 2:179 183