CHEM*3440. Raman Spectroscopy. How It Works - Virtual States. The Spectrum. Chemical Instrumentation. Raman Spectroscopy. Topic 11

Similar documents
IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

Application of IR Raman Spectroscopy

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Advanced Spectroscopy Laboratory

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

Chem Homework Set Answers

Chem 524 Lecture Notes Raman (Section 17) 2013

Chapter 6 Photoluminescence Spectroscopy

Supporting Information s for

Comments to Atkins: Physical chemistry, 7th edition.

ECE280: Nano-Plasmonics and Its Applications. Week8

Snowy Range Instruments

Material Analysis. What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample?

Vibrational Spectroscopies. C-874 University of Delaware

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

1. Transition dipole moment

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Optics and Spectroscopy

Raman: it s not just for noodles anymore

Application of Raman Spectroscopy for Noninvasive Detection of Target Compounds. Kyung-Min Lee

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

Resonance Raman measurements utilizing a deep UV source

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Science Drivers. Spectroscopic Sensors. In Situ Sensors. Development of autonomous and remote platforms

Skoog Chapter 6 Introduction to Spectrometric Methods

SWOrRD. For direct detection of specific materials in a complex environment

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Analytical Spectroscopy Review

Industrial Diode Lasers. High-resolution Raman microscopy. Bernhard Wondra, Harald Rossmeier and Thomas Hellerer TOPTICA Photonics AG

New Developments in Raman Spectroscopic Analysis

Engineering Medical Optics BME136/251 Winter 2017

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching

Ultraviolet-Visible and Infrared Spectrophotometry

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories

Surface-Enhanced Raman Spectroscopy

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

(i.e. what you should be able to answer at end of lecture)

RAMAN SPECTROSCOPY OF INK ON PAPER

3) In CE separation is based on what two properties of the solutes? (3 pts)

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Chapter 15 Molecular Luminescence Spectrometry

Chapter 1. Introduction. Concepts of Raman spectroscopy

Lecture 0. NC State University

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Secondary Ion Mass Spectrometry (SIMS)

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Survey on Laser Spectroscopic Techniques for Condensed Matter

Instructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light

two slits and 5 slits

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

Molecular spectroscopy

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Chap 4 Optical Measurement

Chapter 17: Fundamentals of Spectrophotometry

Session #1: Theoretical background and computer simulations of molecular vibrations.

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

Chem 442 Review of Spectroscopy

Vibrational Spectroscopy of Molecules on Surfaces

Underwater Raman Sensor for Detecting High Explosives and Homemade Explosives (HMEs)

Instrumental Analysis: Spectrophotometric Methods

A56. Raman Spektroscopy. Jan Publisher: Institute of Physical Chemistry

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Administrative details:

25 Instruments for Optical Spectrometry

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence

requency generation spectroscopy Rahul N

Interested in exploring science or math teaching as a career?

Characterisation of vibrational modes of adsorbed species

Chapter 17: Fundamentals of Spectrophotometry

9/28/10. Visible and Ultraviolet Molecular Spectroscopy - (S-H-C Chapters 13-14) Valence Electronic Structure. n σ* transitions

Highly efficient SERS test strips

Energy transport in metal nanoparticle plasmon waveguides

Development of optimized Raman Spectroscopy setup for species detection in flames

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy

PC Laboratory Raman Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy

I. Proteomics by Mass Spectrometry 1. What is an internal standard and what does it accomplish analytically?

AS 101: Day Lab #2 Summer Spectroscopy

6 Topics to be covered. What is spectroscopy? 2Y Spectroscopy: Topic 1. Introduction to Spectroscopy. Quantitative Spectroscopy:

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Figure 1 Relaxation processes within an excited state or the ground state.

2.8. Raman and other Spectroscopies

Study of Phase Transitions by Means of Raman Scattering

Measurement Examples. Excitation and Emission Scans. Steady State Fluorescence Anisotropy. Kinetic Measurements

Near-field Raman spectroscopy using a sharp metal tip

2.7. Raman and other Spectroscopies

Light Interaction with Small Structures

Techniken der Oberflächenphysik

Small Signal Gain in DPAL Systems

Chemical Analysis on complex biological systems by Raman spectroscopy. Janina Kneipp

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS)

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Transcription:

Raman Spectroscopy Another spectroscopic technique which probes the rovibrational structure of molecules. CHEM*3440 Chemical Instrumentation Topic 11 Raman Spectroscopy C.V. Raman discovered in 1928; received Nobel Prize in 1931. Can probe gases, liquids, and solids. Must use a laser source for excitation. Resurgence in recent years due to the development of new detectors with improved sensitivity. Shift back away from FT-Raman to dispersive Raman with multichannel detector systems. How It Works - Virtual States Excitation Rayleigh Scattering Raman Scattering Stokes Anti-Stokes Excited Electronic State Virtual Electronic State it only exists while the electrical field of the photon is present. Ground Electronic State The Spectrum A complete Raman spectrum consists of: a Rayleigh scattered peak (high intensity, same wavelength as excitation) a series of Stokes-shifted peaks (low intensity, longer wavelength) a series of anti-stokes shifted peaks (still lower intensity, shorter wavelength) spectrum independent of excitation wavelength (488, 632.8, or 1064 nm)

Compare IR and Raman Spectra Some Raman Advantages Here are some reasons why someone would prefer to use Raman Spectroscopy. Non-destructive to samples (minimal sample prep) Higher temperature studies possible (don!t care about IR radiation) Easily examine low wavenumber region: 100 cm -1 readily achieved. Better microscopy; using visible light so can focus more tightly. Spectra of PETN explosive. From D.N. Batchelder, Univ. of Leeds Easy sample prep: water is an excellent solvent for Raman. Can probe sample through transparent containers (glass or plastic bag). E = E 0 cos! ex t Origin of Raman Effect µ induced = "E = "E 0 cos! ex t " = " 0 + ( r # r eq ) d" dr r # r eq = r max cos! vib t " = " 0 + $ d" & % dr ' r max cos! vib t µ induced = $ (" 0 + $ d" & % % dr ' r max cos (! vib t) & ) E ' 0 cos! ex t E 0 r $ d" & max % dr ' cos (! ex t)cos! vib t [ ] cos x cos y = 1 2 cos( x + y) + cos( x # y) * µ induced = " 0 E 0 cos (! ex t) + E 0 r max 2 The oscillating electric field of the excitation light. The induced dipole moment from this oscillating field. The molecular polarizability changes with bond length. The bond length oscillates at vibrational frequency. Hence the polarizability oscillates at same frequency. $ d" & % dr ' cos (! ex +! vib )t = " 0 E 0 cos (! ex t) + Remember trig identity. [ + cos ((! ex #! vib )t)] Substitute. Induced dipole has Rayleigh, stokes, and anti-stokes components. Watch Out For Fluorescence Spectrum of anthracene. A: using Ar + laser at 514.5 nm. B: using Nd:YAG laser at 1064 nm. Want to use short wavelength because scattering depends on 4th power of frequency. BUT Want to use long wavelength to minimize chance of inducing fluorescence.

Sources Raman intensity is weak and the excitation source must be strong to generate sufficient signal. Source must be monochromatic so that spectrum is sufficiently uncomplicated. Intense lamps can work, but when monochromatized, have very little power. Scattering efficiency increases as! 4 : the bluer the light, the more the scattering. The bluer the light, the greater the chance of producing fluorescence. Lasers are used almost exclusively. Sources con t Experiment used to require considerable excitation power Ion lasers, 40 W cw He:Ne, 10 W cw YAG, 1 J/10 ns pulse (100 MW average pulse) Ar + Ion: 488.0 and 514.5 nm Kr + Ion: 530.9 and 647.1 nm He:Ne: 632.8 nm Diode Lasers: 782 and 830 nm Nd:YAG: 1064 (532 when doubled) nm I just checked. Here is a 500 mw Ar ion laser for sale on ebay for $1000. But detectors have improved so much, the source power requirements have been decreased. Diode laser, 25 mw other lasers can be made correspondingly smaller. Detectors Scattered light is low intensity, so high gain PMT!s have been used in the past. This was used for scanned and FT-Raman instrumentation for many years. Now cooled CCD arrays are used; experiment is now multichannel. Resonance Raman Effect The Raman effect is quite weak; Rayleigh emission is 10 5 to 10 6 times more intense. If virtual state is close to a real molecular state, the transition probability is greatly enhanced. Resonance Raman is enhanced 10 2 to 10 6. Can detect concentrations as low as 10-8 M. Resonance Raman spectra much simpler because enhancements only occur with transitions associated to the chromophore. All Raman processes are coherent; the excited state exists only during the time that the photon is there. It is not an absorption-reemission process as with fluorescence. Lifetime on order of 10-14 sec. Cooled NIR detector, 1024 x 256 pixel array, 26 µm square pixels. From Jobin Yvon.

Surface Enhanced Raman Effect When molecules are absorbed on very small particles of Au, Ag, Cu or on nanoroughened surfaces of the same, the Raman signal is increased 10 4 to 10 7. Some debate around origin of the effect. Attributed to enhanced electric fields at particles with small curvature. Couple SERS with Resonance Raman, to achieve intensity amplifications of as much as 10 12. Can detect extremely low concentrations in nm to pm range. FT- Raman Use a laser source in NIR or Visible, coupled with interferometer. Can perform FT-Raman studies. Advent of highly sensitive array detectors has cut into the FT- Raman territory. Most manufacturers going back to dispersive instruments. Spectrum is of Rhodamine 6G on Ag nanoparticles showing enhancement. S.R. Emory and S. Nie, Analytical Chemistry 69, 2631 (1997). Multichannel Raman Spectroscopy Instrument of Hans Hallen in Phyiscs Dept. at North Carolina State. NSOM Raman Imaging Spectrum of potassium titanyl phosphate. From Hans Hallen at NCSU. Squares are 5 x 5 µm square of this material doped with Rb. A near-field scanning microscope was used and the Raman signal was used to key the substrate response.

Chemical Mapping Focus laser to small spot. Tune spectrometer to particular Raman transition peak. Raster scan the sample under the laser beam, record intensity changes. Resultant map correlates with substance. Acquire an entire spectrum at every point, then choose the feature with which to key the image. Chemical Imaging Now defocus the laser (not a small spot but rather baths the sample in laser radiation). Pass the emitted radiation through a narrow bandpass filter, adjusted to a particular wavelength, chosen to be a certain Raman band. Focus this light on the CCD camera. Bright regions correspond to locations of substance giving rise to Raman signal. Motorized stage from Renishaw for chemical mapping. This is a drug tablet. The yellow corresponds to the active ingredient. Particles are in the 10!s of µm range. Mixture of cocaine and sugar. Bright spots are cocaine. Applications - Art Restoration This 12 th century fresco on a church wall in Italy needed to be restored. What paints to use? Raman analysis clearly identified the paints and pigments that were originally present, permitting a correct choice of cleaning materials and subsequent repainting to restore its original condition. Applications - Paint Chips Forensic analysis of paint chips in vehicle accidents. Often multiple layers. Can analyze with IR by stripping successive layers. Image edge with microraman. Layers 1 and 3 turned out to be rutile phase TiO2 - a white paint. Layer 2 was a Goethite, a red pigment and corrosion inhibitor. Layer 4 was molybdate orange, a common red paint in the 70!s in North America and still used in the U.K. today. Layer 5 was a silicate based paint. Data arising from a case investigated by LAPD.

Applications - Gem Forgery In 1999 a new process was developed called GE POL whereby brown type IIa diamonds could be treated to become indistinguishable from naturally clear diamonds. Raman presented way to distinguish them. Applications - Bullet Proof Glass Identify poly(carbonate) from poly(methylmethacrylate). Both used for shatter-proof glass Originally brown diamond Naturally clear diamond Applications - Sunscreen Formulations Here are the spectra of 5 common sunscreen ingredients. Raman is able to determine from a spectrum on the arm the nature of the sunscreen being used. A: ODPABA (octyl N,N-dimethyl-paminobenzoic acid) B: OMC (octyl p-methoxycinnamate) C: BZ3 (oxybenzone) D: OCS (octyl salicylate) E: DBM (dibenzoylmethane) G.R. Luppnow et al., J. Raman. Spec. 34, 743 (2003).