Byung-Soo Choi.

Similar documents
Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

F O R SOCI AL WORK RESE ARCH

Introduction to Quantum Information Processing


Differentiating Functions & Expressions - Edexcel Past Exam Questions

Framework for functional tree simulation applied to 'golden delicious' apple trees

Chapter 10. Quantum algorithms

Complex numbers: a quick review. Chapter 10. Quantum algorithms. Definition: where i = 1. Polar form of z = a + b i is z = re iθ, where

Introduction to Quantum Computing

α x x 0 α x x f(x) α x x α x ( 1) f(x) x f(x) x f(x) α x = α x x 2

Automatic Control III (Reglerteknik III) fall Nonlinear systems, Part 3

Introduction to Quantum Computing

Redoing the Foundations of Decision Theory

Towards a High Level Quantum Programming Language

APPLYING QUANTUM SEARCH TO A KNOWN- PLAINTEXT ATTACK ON TWO-KEY TRIPLE ENCRYPTION

ROM-BASED COMPUTATION: QUANTUM VERSUS CLASSICAL

Quantum Computing Lecture 6. Quantum Search

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

A Functional Quantum Programming Language

Quantum Search on Strongly Regular Graphs

probability of k samples out of J fall in R.

Physics 101. Vectors. Lecture 2. h0r33fy. EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Quantum Information Processing and Diagrams of States

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x =

Quantum Mechanics & Quantum Computation

Imaginary Numbers Are Real. Timothy F. Havel (Nuclear Engineering)

Discrete quantum random walks

Q A. A B C A C D A,C,D A,B,C B,C B,C Q A. C C B SECTION-I. , not possible

Simon s algorithm (1994)

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

Discrete Quantum Theories

Quantum Searching. Robert-Jan Slager and Thomas Beuman. 24 november 2009

Quantum Circuits and Algorithms

Chapter 10 Conics, Parametric Equations, and Polar Coordinates Conics and Calculus

Adiabatic quantum computation a tutorial for computer scientists

1 Quantum Circuits. CS Quantum Complexity theory 1/31/07 Spring 2007 Lecture Class P - Polynomial Time

Introduction The Search Algorithm Grovers Algorithm References. Grovers Algorithm. Quantum Parallelism. Joseph Spring.

S T A T E B U D G E T : T A X A M E N D M E N T S

C/CS/Phys C191 Grover s Quantum Search Algorithm 11/06/07 Fall 2007 Lecture 21

APPLYING QUANTUM SEARCH TO A KNOWN- PLAINTEXT ATTACK ON TWO-KEY TRIPLE ENCRYPTION

Waves, the Wave Equation, and Phase Velocity

Quantum Complexity Theory and Adiabatic Computation

Continuous-time Fourier Methods

Novel topologies in superconducting junctions

Lecture 2: From Classical to Quantum Model of Computation

MATH 1314 Test 2 Review

There are four irrational roots with approximate values of

Concepts and Algorithms of Scientific and Visual Computing Advanced Computation Models. CS448J, Autumn 2015, Stanford University Dominik L.

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Calculus Summer TUTORIAL

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

6.896 Quantum Complexity Theory October 2, Lecture 9

Exponential Quantum Speed-ups are Generic

ETIKA V PROFESII PSYCHOLÓGA

Transformation Rules for Designing CNOT-based Quantum Circuits

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

An Example file... log.txt

Quantum Computer Algorithms: basics

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies

METHODS OF DIFFERENTIATION. Contents. Theory Objective Question Subjective Question 10. NCERT Board Questions

CHAPTER 3 Describing Relationships

( ) 4. Jones Matrix Method 4.1 Jones Matrix Formulation A retardation plate with azimuth angle y. V û ë y û. év ù év ù év. ë y û.

Trigonometry and modelling 7E

Matrices and Determinants

Short Course in Quantum Information Lecture 2

Quantum Computers. Peter Shor MIT

Exponential algorithmic speedup by quantum walk

Numerical Methods School of Mechanical Engineering Chung-Ang University

FILL THE ANSWER HERE

Quantum Permanent Compromise Attack to Blum-Micali Pseudorandom Generator

Experimental plug and play quantum coin flipping Supplementary Information

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Notes for Lecture 3... x 4

An Introduction to Optimal Control Applied to Disease Models

Compute the Fourier transform on the first register to get x {0,1} n x 0.

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points.

Quantum algorithms (CO 781/CS 867/QIC 823, Winter 2013) Andrew Childs, University of Waterloo LECTURE 13: Query complexity and the polynomial method

18.12 FORCED-DAMPED VIBRATIONS

Scandinavia SUMMER / GROUPS. & Beyond 2014

Two NP-hard Interchangeable Terminal Problems*

Quantum Computing. Thorsten Altenkirch

CSCI 2570 Introduction to Nanocomputing. Discrete Quantum Computation

M30-1: Polynomial, Radical and Rational Functions, Graphs and Equations Exam /20

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Constructive Decision Theory

Quantum search by local adiabatic evolution

A Glimpse of Quantum Computation


Hamiltonian simulation and solving linear systems

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Lecture 3: Constructing a Quantum Model

An Architectural Framework For Quantum Algorithms Processing Unit (QAPU)

A Quantum Associative Memory Based on Grover s Algorithm

Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST

14 April Kidoguchi, Kenneth

Transcription:

Grover Search and its Applications Bung-Soo Choi bschoi3@gmail.com

Contents Basics of Quantum Computation General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric To Weights Multiple Weights Conclusion

Unit of Information 0 Basis, logical value ZERO Basis, logical value ONE = a 0 + b Unit of Information b to basis Bit(Classical Unit of Information) hen a =, b = 0 Þ = 0 or a = 0, b = Þ = Qubit(Quantum Unit of Information) = a 0 + b, a, b Î Complex Number, a + b = ( ) Example) = 0 + i

Basics of Quantum Computation Superposition A qubit can represent to basis states simultaneousl Example) To Qubits for Four Basis Ä = ( 0 + ) Ä ( 0 + ) n qubits can represent Än = å N - k n k = 0 Exponential Reduction of Resource for State Space!!!! = 4 0 Ä 0 + 0 Ä + Ä 0 + Ä = ( 0 0 + 0 + 0 + 4 ) = ( 00 + 0 + 0 + ) 4 ( )

Basics of Quantum Computation Entanglement Space-like long distance correlation ith nosignaling condition Example) An Entangled State for to qubits Ä = Ä + Ä ( 0 0 ) If the state of first qubit is 0, then the state of second qubit MUST be 0 No signaling condition: No a to communicate faster than light!!!

Basics of Quantum Computation Interference To phases of a same basis can be interfered a 0 + b 0 = ( a + b ) 0

Basics of Quantum Computation Operation on quantum state Unitar Operator for Evolving Quantum State + U Þ, hereuu = I init next Measurement Operator(Projection Operator) a 0 b 0 0 = + M = ( + ) M ì ï 0, P = a = í ïî, P = b k m ì, if k = m ü = í ý î0, otheriseþ If measure b, e can get the folloing state ith corresponding probabilit

Basics of Quantum Computation Quantum Parallelism

Basics of Quantum Computation General Vie of Quantum Computation Initialize All Input Qubits Make a Superposed State for All Search Space Appl Necessar Unitar Operators ith Oracle Calles Measure Final State If the final measurement output corresponds to the target solution, it stops. Otherise, it redo all steps from beginning

Basics of Quantum Computation Bounded Quantum Probabilistic (BQP) Classes Unless the quantum computation is sure success, the success probabilit is not unit Hence, e have to redo the quantum computation several times

Contents Basics of Quantum Computation General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric To Weights Multiple Weights Conclusion

Search Problem Finds a certain x t here F(x t )= and x t is n- bit number x i = n = N Classical Oracle Quer Complexit is Quantum Oracle Quer Complexit is Quadratic Speedup!!! O N O ( ) ( N )

Basic Idea of Grover Search Lov Grover found a quantum search (996) Basic Idea Prepare and Initialize all input space Appl Grover operator until onl target input survive Each Grover operator checks all function values for all input values simultaneousl Single Time Step for All Evaluations Each Grover operator increases the phase amplitude of target input, and decreases the phase amplitudes of all other nontarget inputs Phase Amplitude increases linearl Measure the final state, and hence onl the target can be measured The measurement probabilit is the square of the phase amplitude

Schematic circuit for the quantum search algorithm O( N ) For Search space 0 Än n H Ä G G G Measure For Oracle Workspace 0 Oracle Phase x (- ) f x ( ) x n H Ä 0 0 x - x fo r x > 0 H Än

Some Insights Phase x oracle (- ) f x ( ) x n H Ä 0 0 x - x fo r x > 0 H Än 0 0 üï ý Þ - x - x fo r x > 0 ïþ ( 0 0 I ) x, x ¹ x t üï ý Þ - - x, x = xt ïþ ( I x t x t ) Ä n ( 0 0 - ) Þ ( - ) Ä n H I H I \ G = ( -I)( I - x x ) t t

Some Insights ( I - x x ) t t ( - I ) : Inversion about the target : Inversion about the average \ G= Inversion about the average * Inversion about the target

Example of Grover Search Original Amplitudes Negate Amplitude Average of all Amplitudes Flip all Amplitudes around Avg

Analsis Initial State: N - = å N x= 0 x Let s = x t ns = - å x xt N ¹ x q q N - sin = cos = N N q q = sin s + cos ns

Analsis Basis Vector: æ ns ö è s ø æ q ö ç cos = q sin è ø æ q q ö æ 0 ö ç cosg sin g I - xt xt = ( ) - I = è0 -ø q q sin cos ç g - g è ø æ q q ö ç cos g -sin g æcos( q ) -sin ( q ) ö G = = R ( q ) q q sin ( q ) cos( q ) sin cos ç g g è ø è ø ( )

G Analsis æ q q öæ q ö æ æ q öö cos sin cos cos q + ç g - g ç ç è ø = = q q q q sin cos ç sin ç æ ö ç g g ç sin q + è øè ø è è ø ø \ G k æ æ q öö ç cosç kq + è ø = ç æ q ö ç sinç kq + è è ø ø

k Psucess s G sin k Analsis æ q ö = = ç q + è ø æ q ö sin ç kq + =>, P sucess => è ø q p p kq + = k = - q q sin =. N q q q q If N is large, 0, sin 0, sin, \» N N k p N 4 = - \O( N )

Contents General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric To Weights Multiple Weights Conclusion

Smmetric To Weight Decision Exact quantum algorithm to distinguish Boolean functions of different eights, Samuel L Braunstein, Bung-Soo Choi, Subhamo Maitra, and Subhroshekhar Ghosh, Journal of Phsics A: Mathematical and Theoretical, 40(9) 844-845 4, http://dx.doi.org/0.088/75-83/40/9/07

Motivation We can exploit the quantum computation for crptanalsis Crptanalsis: Analze the securit of secure functions Usuall, it takes large volume of computation, and hence computationall hard to crack the secure functions In this ork, as the basic level, e can consider to check the eight of Boolean functions

Definitions Weight of a Boolean function f = # of solutions / # of all inputs Smmetric Weight Condition {, + =, 0< < <} Smmetric Weight Decision Problem Decide the exact eight of f ith the smmetric eight condition Limited Weight Decision Problem æ kp ö = sin = è k + ø cos kp ö è k + ø æ

Grover Search in Hilbert Space b b,0 = sin s + cos ns G = -I ( q ) I ( f) s,0 s,4 ( p, p ),3 ( p, p ), i I ( q ) º I - ( - e q ) b ( p, p ) q = f = p b b, ( p, p ) G = -I ( p ) I ( p ) s,0 = ( - I)( I - s s ),0,0 b b /,0 ns b b, k = sin(k + ) s + cos(k + ) ns

Grover Search in Bloch Sphere,0 æ sin b ö = 0 ç cos b è - ø q f i( + ) G = -e R (-q ) R s (-f ),0 X,,3 ( p, p ) ( p, p ) ( p, p ) b b,4 b b Z s b æ 0 ö = 0 ç + è ø, k æ sin((k + ) b) ö = 0 ç - cos((k + ) b) è ø, ( p, p ) æ sin b ö 0 = ç cos b è - ø,0 ns æ 0 ö = 0 ç - è ø

+ = s æ 0 ö = 0 ç + è ø ns æ 0 ö = 0 ç - è ø

= /4 s æ 0 ö = 0 ç + è ø Z X æ p ö ç sin 3 ç 0 = ç p ç - cos è 3 ø 0 ns æ 0 ö = 0 ç - è ø

= 3/4 æ p ö ç sin 3 ç 0 = ç p ç - cos è 3 ø 0 X s æ 0 ö = 0 ç + è ø Z ns æ 0 ö = 0 ç - è ø

One Quer is Sufficient When = ¼ and = ¾, One Quer is Sufficient If the final measurement output is one of solutions, = If the final measurement output is one of non-solutions, =

Sure Success ith One Quer If ¼ <= <= and is knon before, One Quer is Sufficient to find an One of Solutions b Finding To phases Z X D.P. Chi and J. Kim, Quantum database search b a single quer in First NASA International Conference on Quantum Computing and Quantum Communications, Palm Springs, 998, edited b C.P. Williams (Springer, Berlin, 998)

Limited Weight-Decision Algorithm = = = kp k + sin ( ) kp k + ( k + ) p k + cos ( ) sin ( ) æ sin( kp ) ö æ 0 ö æ 0 ö = 0 = 0 = 0 ç - cos( kp ) ç - cos( kp ) ç (-) è ø è ø è ø, k k + æ sin(( k + ) p ) ö æ 0 ö æ 0 ö 0 0 0, k = = = ç k - cos(( k + ) p ) ç - cos(( k + ) p ) ç (-) è ø è ø è ø Limited Weight-Decision Algorithm Appl k Grover operators to Measure, k in the computation basis Let the measured result be,0 If k is even and f( )=, = else = ˆx ˆx If k is odd and f( )=, = else = ˆx

When To Steps are Sufficient + Z = S,0 +X -X b,0 - Z = NS

When To Steps are Sufficient R S ( p ),0 + Z = S,0 B = R ( p) S,0 +X -X,0 b A = R ( p) S,0 - Z = NS

When To Steps are Sufficient R ( q ) R S ( p ),0,0 + Z = S Line f Line A A = R ( q ) R ( p ) S,0,0,0 B = R ( p) S,0 +X -X,0 b A = R ( p) S,0 B = R ( q ) R S ( p),0,0 - Z = NS Line B Line -f

When To Steps are Sufficient R ( p ) R ( q ) R ( p ) S,0 S,0 Line B + Z = S Line f Line A A = R ( p) R ( q ) R ( p) 3 S S,0,0 A = R ( q ) R ( p ) S,0,0,0 B = R ( p) S,0 +X -X,0 b A = R ( p) S,0 B = R ( p) R ( q ) R ( p) 3 S S,0,0 B = R ( q ) R S ( p),0,0 Line A - Z = NS Line B Line -f

When To Steps are Sufficient B = R ( q ) R ( p ) R ( q ) R ( p ) 4 S S,0,0,0 + Z = S Line f Line B Line A A = R ( p) R ( q ) R ( p) 3 S S,0,0 A = R ( q ) R ( p ) S,0,0,0 B = R ( p) S,0 +X -X,0 b A = R ( p) S,0 B = R ( p) R ( q ) R ( p) 3 S S,0,0 B = R ( q ) R S ( p),0,0 Line A - Z = NS Line B Line -f A = R ( q ) R ( p ) R ( q ) R ( p ) 4 S S,0,0,0

æ æ,0,0 X = sin b sin(k - 3) b 0 = ç cos(k 3) b è - - ø ö, k - Z Z = X tan b - ö ç 0 ç cos b è - ø B b Z Even K cos(k - ) b = X tan b - cos b non - solution A Z = - X tan b - R ( p ) Z, k - æ - sin(k - 3) b = ç 0 ç cos(k 3) b è - - ø ö = A R æ =,0, k - ( q ) R ( p ) Z, k - cos(k - ) b - cos b ç sin b = ç ç - cos(k - ) b - cos b ç cos b è ø B = R ( p ) A Z æ - cos(k - ) b + cos b ç sin b = ç - ç - cos(k - ) b - cos b ç cos b è ø ö ö

Odd K R ( p ) Z, k- æ -sin(k - 3) b æ,0 sin b X ö = ç 0 ç cos b è - ø = ç 0 ç cos(k 3) b è - - ø,0 Z = - X tan b + ö Z A b Z solution = X tan b -, k- cos(k - ) b cos b æ sin(k - 3) b = ç 0 ç cos(k 3) b è - - ø Z = X tan b + ö A = = R,0, k- ( q ) R ( p ) Z, k- æ cos b + cos(k - ) b ç sin b = ç ç cos b - cos(k - ) b ç cos b è ø B = R ( p ) A B æ - cos b - cos(k - ) b Z ö ç sin b = ç - ç cos b - cos(k - ) b ç cos b è ø ö

-, k cosq = Phase Conditions for A k (-) cos b - cos b cos(k - ) b sin b sin(k - ) b q k cos(k - ) b - (-) cos b æ sin(k - 3) b ö ç sin b R ( q,0 ) R z ( p ) 0 ç = ç k cos(k 3) b è - - cos(k ) b ( ) cos ø ç - - - - b ç cos b è ø = sinq sin(k - ) b æ Based on Even K ö

Phase Conditions for q R,0 k æ -cos(k - ) b + (-) cos b ç sin b æ 0 ö ( q) ç - = 0 k k ç -cos(k - ) b ( ) cos ( ) - - b è - - ø ç cos b è ø cosq = k k (-) sin b ( sin q - (-) sin b ) k cos b cos b - (-) (k - ) b ö

Smmetric Weight-Decision Algorithm Smmetric Weight Decision Algorithm,0 = 0, i = 0 If Otherise k satisfies While Än p 5 sin, k =, k - p k p sin ( ) < sin ( ) k - k + k - k p < b p b - + + b = p k k i < ( k - ) do { + = - I ( p ) I ( p ), i = i + }, i s, i,0 = -I (-q ) I ( p ),, k - s, k -,0 = -I (-q ) I ( p ) -, k s, k,0 Measure, k Let the result be in the computational basis ˆx If k is odd and f ( x ˆ) = then = else = If k is even and ( ˆ) then else = f x = =

Performance When k is given, Classical Loer Bound At least O(k ) Quantum Upper Bound At most O(k)

Conclusions and Open Problems For General Weight Condition, an Exact Quantum Algorithm is possible When General Weights? Onl the condition: 0< < < When Multiple Weights?,, 3, What is the Loer Bound for Weight Decision Problems?

Contents General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric To Weights Multiple Weights Conclusion

Asmmetric To Weight Decision Quantum Algorithm for the Asmmetric Weight Decision Problem and its Generalization to Multiple Weights, Bung-Soo Choi and Samuel L. Braunstein To Appear on Quantum Information Processing, http://dx.doi.org/0.007/s8-00-087-9

Motivation Extend the Smmetric Case to Asmmetric Case Problem 0< + <

Modif the Oracle Function b Adding to qubits more to reduce the problem into the smmetric case =n /N, =n /N Basic Idea To satisf + =, e modif the Oracle as f '( x) ì f ( x), 0 x < N, ï f ( x), N x < N, = í ï, N x < N + l, ï î0, N + l x < 4N

Basic Idea n + ' = 4N l n + ' = 4N l ' + ' = Þ = - + l N ( n n )

Conclusion B adding more input space, e can reduce the asmmetric eight decision problem into the smmetric eight decision problem For adding more inputs, e just need onl to qubits

Contents General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric To Weights Multiple Weights Conclusion

Motivation Given a Boolean function f, decide exactl the eight of f here {0 < < < m < }.

Basic Idea Multiple Weight Decision Algorithm Let S = {,,..., m}. WHILE ( S = ) { min = smallest eight from S. max = largest eight from S. Asmmetric Weight Decision Algorithm( min, max ). S = S non_selected eight. } Return the exact eight as S.

Analsis Classical Quer Complexit is O(N) Overall Complexit is O( m N ) When m N, the proposed algorithm orks faster than classical one

Contents General Properties of Grover Search Idea Analsis Weight Decision Smmetric To Weights Asmmetric To Weights Multiple Weights Conclusion

Conclusion The Speedup of Grover search is quadratic, not exponential. Hoever, the applications based on Grover search is ver ide In this talk, e just discuss applications of Grover search for Weight Decision Problem of Boolean function Smmetric Weight Asmmetric Weight Multiple Weights Since lots of classical algorithms are based on Search algorithm, Grover search can be utilized for them ith shoing quadratic speedup