ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

Similar documents
ECE Spring Prof. David R. Jackson ECE Dept. Notes 33

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26

ECE Spring Prof. David R. Jackson ECE Dept.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

Aperture Antennas 1 Introduction

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6

ECE Spring Prof. David R. Jackson ECE Dept.

General Properties of Planar Leaky-Wave Antennas

ECE 6341 Spring 2016 HW 2

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.)

Notes 19 Gradient and Laplacian

The Spectral Domain Method in Electromagnetics. David R. Jackson University of Houston

So far, we have considered three basic classes of antennas electrically small, resonant

Closed-Form Evaluation of Mutual Coupling in a Planar Array of Circular Apertures

4.4 Microstrip dipole

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator

Villa Galileo Firenze, 12 ottobre 2017 Antenna Pattern Measurement: Theory and Techniques

LOWELL WEEKLY JOURNAL.

AOL Spring Wavefront Sensing. Figure 1: Principle of operation of the Shack-Hartmann wavefront sensor

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

Waves in Linear Optical Media

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , P. R.

Solutions to Sample Questions for Final Exam

International Distinguished Lecturer Program

Finite Element Method (FEM)

Road Map. Potential Applications of Antennas with Metamaterial Loading

Characterization of Printed Transmission Lines at High Frequencies

Presented at the COMSOL Conference 2009 Milan. Analysis of Electromagnetic Propagation for Evaluating the

Fourier Approach to Wave Propagation

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

Design and Analysis of Reconfigurable Frequency Selective Surfaces using FDTD

Electromagnetism HW 1 math review

Practice Exam 1 Solutions

Quantum Theory. Thornton and Rex, Ch. 6

Introduction to Waves in Structures. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Cartesian Coordinates

Antennas and Propagation Array. Alberto Toccafondi

OPAC102. The Acoustic Wave Equation

PHYS 3313 Section 001 Lecture # 22

RECTANGULAR MICROSTRIP RESONATOR ILLUMI- NATED BY NORMAL-INCIDENT PLANE WAVE

Math 1272 Solutions for Fall 2005 Final Exam

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves

Solutions: Homework 7

Math 10C - Fall Final Exam

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University

CHAPTER 6 Quantum Mechanics II

Created by T. Madas LINE INTEGRALS. Created by T. Madas

FRACTIONAL DUAL SOLUTIONS AND CORRESPONDING SOURCES

Ordinary Differential Equations (ODEs)

Cherenkov emission in a nanowire material

ECE Microwave Engineering

ECE Spring Prof. David R. Jackson ECE Dept. Notes 13

GBS765 Electron microscopy

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

MAT 211 Final Exam. Spring Jennings. Show your work!

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37

Network Theory and the Array Overlap Integral Formulation

7. introduction to 3D scattering 8. ISAR. 9. antenna theory (a) antenna examples (b) vector and scalar potentials (c) radiation in the far field

Merton College Maths for Physics Prelims August 29, 2008 HT I. Multiple Integrals

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

General review: - a) Dot Product

Compton Storage Rings

EQUIVALENT CIRCUIT MODEL FOR ANALYSIS OF INHOMOGENEOUS GRATINGS

Chapter 1. Vector Analysis

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

THE COMPOUND ANGLE IDENTITIES

Physics 214 Midterm Exam Solutions Winter 2017

Written Examination. Antennas and Propagation (AA ) June 22, 2018.

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

(b) Find the interval of convergence of the series whose n th term is ( 1) n (x+2)

Array Antennas. Chapter 6

C3 A Booster Course. Workbook. 1. a) Sketch, on the same set of axis the graphs of y = x and y = 2x 3. (3) b) Hence, or otherwise, solve the equation

Notes 3 Review of Vector Calculus

ANALYTICAL POLE RESIDUE CALCULATION IN SPECTRAL METHOD OF MOMENTS FORMULATIONS FOR PERIODIC STRUCTURES

Module 7 : Antenna. Lecture 52 : Array Synthesis. Objectives. In this course you will learn the following. Array specified by only its nulls.

Midterm Exam 2. Nov. 17, Optics I: Theory CPHY72250

Lecture notes 5: Diffraction

EQUIVALENT DIELECTRIC CONSTANT OF PERIODIC MEDIA

5 Operations on Multiple Random Variables

Two Posts to Fill On School Board

Reflection/Refraction

Problem Set 5 Math 213, Fall 2016

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Partial differential equations (ACM30220)

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.) Equation Section 18

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles

The concept of perfect electromagnetic conductor (PEMC) has been defined by medium conditions of the form [1, 2]

Rotations about the coordinate axes are easy to define and work with. Rotation about the x axis by angle θ is. R x (θ) = 0 cos θ sin θ 0 sin θ cos θ

Bound and Scattering Solutions for a Delta Potential

Transcription:

ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 32 1

Overview In this set of notes we extend the spectral-domain method to analyze infinite periodic structures. Two typical examples of infinite periodic problems: Scattering from a frequency selective surface (FSS) Input impedance of a microstrip phased array 2

FSS Geometry Reflected plane wave z Incident plane wave ( 1, ) (, 1) (,) (,1) y ( 1, ) ( mn, ) L W x b a Metal patch Dielectric layer Transmitted plane wave 3

FSS Geometry (cont.) ψ inc = Ae ( θ, φ ) ( ) jk x+ k y + jk z e x y z = arrival angles k = k sinθ cosφ x k = k sinθ sinφ y k = k cosθ z Reflected plane wave Incident plane wave z L W (, 1 ) x (, ) ( 1, ) b ( 1, ) (,1 ) a ( mn, ) y Metal patch Note: ψ denotes any field component of interest. Dielectric layer Transmitted plane wave Note: We are following plane-wave convention for k x and k y, and transmission-line convention for k z. 4

Microstrip Phased Array Geometry Probe current mn : j( kxma kynb) I = I e + mn z Probe W L (,) a ( mn, ) y b Dielectric layer Metal patch x Ground plane The wavenumbers k x and k y are impressed by the feed network. 5

Microstrip Phased Array Geometry (cont.) j( kxma kynb) I = I e + mn ( θ, φ ) = radiation angles k = k sinθ cosφ x k = k sinθ sinφ y Note: If the structure is infinite, a plane wave get launched. Antenna beam ( θ, φ ) z Probe W L (,) a ( mn, ) y b Dielectric layer Metal patch x Ground plane 6

Floquet s Theorem Fundamental observation: If the structure is infinite and periodic, and the excitation is periodic except for a phase shift, then all of the currents and radiated fields will also be periodic except for a phase shift. This is sometimes referred to as Floquet s theorem. z y x 7

Floquet s Theorem (cont.) From Floquet s theorem: ( ) ( ) jk J r J r r e t rmn = kt = xkx + yk mn s s mn ˆ ˆ z Layered media (,) y L W a r mn ( mn, ) b x 8

Floquet s Theorem (cont.) If we know the current of field at any point within the (,) unit cell, we know the current and field everywhere. A = ab = area of unit cell S z Layered media (,) y S L W a b x 9

Floquet Waves Let ψ denote any component of the surface current or the field (at a fixed value of z). ψ ψ ( +, ) = ψ (, ) (, + ) = ψ (, ) x ay xye xy b xye jk jk x y a b ψ where jk ( xx+ kyy) xy, = e Pxy, ( ) ( ) ( +, ) = (, ) (, + ) = (, ) P x a y P x y Pxy b Pxy z Layered media (,) y L W a r mn ( mn, ) b x 1

Floquet Waves (cont.) ψ jk ( xx+ kyy) xy, = e Pxy, ( ) ( ) From Fourier-series theory, we know that the 2D periodic function P can be represented as (, ) 2π p 2πq j x+ y a b pq p= q= Pxy A e = Hence we have ψ (, ) 2π p 2πq j kx+ x+ ky+ y a b pq p= q= xy A e = 11

Floquet Waves (cont.) Hence, the surface current or field can be expanded in a set of Floquet waves: ψ (, ) = xy A e p= q= pq ( xp yq ) jk x+ k y k k xp yq k + x k + y 2π p a 2π q b ( xp, yq ) ( pq, ) k k = wavenumbers of Floquet wave k = xk ˆ + yk ˆ tpq xp yq 2 2 ( ˆ ˆ π p q k ) ˆ π ˆ tpq = xkx + yk y + x + y a b Incident part Periodic part 12

Floquet Waves (cont.) Note: Each Floquet wave repeats from one unit cell to the next, except for a phase shift that corresponds to that of the incident wave. ψ Hence pq (, ) x+ ay = e ψ pq = = = = e ( xp ( ) yq ) j k x+ a + k y ( xp ) ( xp yq ) e j k a j k x+ k y j a j( kx a) a j( kxp x+ kyq y) e e e e e ( ) ( x a) j( kxp x+ kyq y) e j k ( a) j k x ψ pq 2π p ( a) ( xy, ) ( ) x x+ ay, = e jk ψ xy, pq Similarly, ψ pq jk ( y b) xy, + b= e ψ xy, ( ) pq ( ) 13

Periodic SDI The surface current on the periodic structure is represented in terms of Floquet waves: J xy a e s ( ) jk, tpq = p= q= pq r r= xx ˆ + yy ˆ To solve for the unknown coefficients, multiply both sides by and integrate over the (,) unit cell S : e jk tp q r S s ( ) jk r jk r jk r = pq S p= q= tp q tpq tp q, J x y e ds a e e ds = 2π 2π j ( p p ) x+ ( q q ) y a b pq p= q= S a e ds Use orthogonality: ( ) S jk tp q J x, y e ds a A s r = pq 14

Periodic SDI (cont.) Hence, we have: Therefore we have: 1 jktpq r apq = J s ( x, y) e ds A S 1 jktpq r apq = J s ( x, y) e ds A S = = = 1 A 1 A 1 A jk ( xpx+ kyq y) J x y e ds (, ) (, ) s xp yq s s J k k J ( ktpq ) so The current J s is the current on the (,) patch. 1 a = J k k A (, ) pq s xp yq 15

Periodic SDI (cont.) Hence the current on the 2D periodic structure can be represented as 1 (, ) (, ) jktpq Js xy = J s kxp kyq e A p= q= r We now calculate the Fourier transform of the 2D periodic current J s (x, y) (this is what we need in the SDI method): jktpq r jkxpx jkyq y F e = F e e = = jkxpx jkyq y + jkx ( x + ky y ) e e e dxdy jk x jk y + jk y xp + jkxx yq y e e dx e e dy ( kx kxp ) πδ ( ky kyq ) = 2πδ 2 16

Periodic SDI (cont.) Hence 1 J k k J k k k k k k A (, ) = (, ) 2πδ ( ) 2πδ ( ) s x y s xp yq x xp y yq p= q= Next, we calculate the field produced by the periodic patch currents: 1 jkx ( x + ky y ) E x, y, z = G k, k ; z, z J k, k e dk dk ( ) E k k z G k k z z J k k (,, ) = (, ;, ) (, ) ( 2π ) x y x y s x y 2 ( ) ( ) x y s x y x y 17

Periodic SDI (cont.) Hence, we have 1 E xyz,, = Gk, k; zz, ( ) ( 2π ) 2 1 A ( ) x y p= q= e jkx+ ky J k k k k k k (, ) 2πδ ( ) 2πδ ( ) s xp yq x xp y yq ( x y ) dk dk x y 18

Periodic SDI (cont.) Therefore, integrating over the delta functions, we have: 1 ( ) ( ) E x, y, z = G k, ;, (, ) xp kyq z z J s kxp kyq e A p= q= ( xp yq ) jk x+ k y The field is thus in the form of a double summation of Floquet waves. 19

Periodic SDI (cont.) Compare: Single element (non-periodic): 1 jkx ( x + ky y ) E x, y, z = G k, k ; z, z J k, k e dk dk ( ) ( 2π ) 2 ( ) ( ) x y s x y x y Periodic array of phased elements: 1 ( ) ( ) E x, y, z = G k, ;, (, ) xp kyq z z J s kxp kyq e A p= q= ( xp yq ) jk x+ k y 2

Periodic SDI (cont.) Conclusion: ( ) ( 2π ) 2 ( ) F k, k dk dk F k, k A x y x y xp yq p= q= where ( ˆ ˆ ) k = xk + yk tpq xp yq ( ) 2π p 2πq = xk ˆ ˆ ˆ ˆ x + yk y + x + y a b The double integral is replaced by a double sum, and a factor is introduced. 21

Periodic SDI (cont.) Sample points in the (k x, k y ) plane k y ( kxp, kyq ) k x 2 π /b ( kx, ky) 2 π /a 22

Microstrip Patch Phased Array Example z Find E x (x,y,) y L W x a b k k = k sinθ cosφ x = k sinθ sinφ y Microstrip Patch Phased Array 23

Phased Array (cont.) Single patch: 1 1 E xy,, = J k, k ( ) ( 2π ) + + ( ) x 2 2 sx x y kt 2 2 k k x y + D k D k ( ) ( ) m t e t e ( x y ) j k x+ k y dk dk x y J sx π x, = cos L ( xy) L cos kx π W 2 J sx ( kx, ky ) = LW sinc k y 2 2 2 2 π L kx 2 2 24

Phased Array (cont.) 2D phased array of patches: 2 2 1 1 k xp k yq Ex ( xy,,) = J 2 sx ( kxp, kyq ) + e A p= q= ktpq Dm ( ktpq ) De ( ktpq ) ( xp yq ) jk x+ k y where J sx π x, = cos L ( xy) L cos k π W J k k LW k 2 2 π L kxp 2 2 xp 2 sx ( xp, yq ) = sinc yq 2 2 k = k + k 2 2 tpq xp yq 25

Phased Array (cont.) The field is of the form where x (,,) E xy = A e = = p= q= p= q= p= q= A A pq pq pq e ψ ( xp yq ) jk x+ k y jk pq tpq r ( xy, ) 2π p 2πq k ˆ ˆ ( ˆ ˆ ) ˆ ˆ tpq = xkxp + yk yq = xkx + yk y + x + y a b The field is thus represented as a sum of Floquet waves. 26

Scan Blindness in Phased Array This occurs when one of the sample points (p,q) lies on the surface-wave circle (shown for (-2, )). Scan blindness from (-2,) k y ( kxp, kyq ) β TM k x ( kx, ky) 2 π /a (E-plane scan) 2 π /b 27

Scan Blindness (cont.) The scan blindness condition is: k = k = β ( for some ( pq, )) tpq tpq TM 2 2 1 1 k xp k yq Ex ( xy,,) = J 2 sx ( kxp, knq ) + e A p= q= ktpq Dm ( ktpq ) De ( ktpq ) ( xp yq ) j k x+ k y ( ) ( ) D k D β m tpq = m TM = The field produced by an impressed set of infinite periodic phased surface-current sources will be infinite. 28

Scan Blindness (cont.) Physical interpretation: All of the surface-wave fields excited from the patches add up in phase in the direction of the transverse phasing vector: Proof: AF = A e sw = mn, mn, mn, A A mn mn mn k = xk ˆ + yk ˆ e tpq xp yq Start with the surface-wave array factor: e ( βtm m cosφ βtm n sinφ) + j x + y kxp kyq + j βtm x m + βtm y n k tpq k tpq kxp kyq + j βtm x m + βtm y n β TM β TM k xp cosφ = k tpq y φ N elements x y m n x r = ma = nb 29

Scan Blindness (cont.) Hence we have, in this direction, that y AF = A e sw = = mn, mn, mn, A A mn mn mn e e ( xp m yq n ) + jk x + k y 2π p 2πq + j k + x + k + y a b x m y n 2π p 2πq + j kx+ ( x+ ma) + ky+ ( y+ nb) a b + jk x + jk y 2π p 2πq + j ma + j nb a b mn mn, xp yq + j( kxma+ kynb) = e e A e e e = + jk x + jk y mn, xp yq e e A e ( x y ) + jkxpx + jkyq y j( kxma+ kynb) + j( kxma+ kynb) e e A e e + jk x + jk y mn, xp yq e e A N mn + j k ma+ k nb φ N elements k xp cosφ = k tpq x r 3

Scan Blindness (cont.) y TM surface wave φ In the direction φ, the surface fields from each patch add up in phase. x k xp cosφ = β TM N elements sw + jkxpx + jkyq y ( ) AF = N A e e Note: There is also an element pattern as well, with the field decaying as 1/ρ 1/2, but this is ignored here. 31

Scan Blindness (cont.) Example p = 2, q= k k xp yq = β = TM β β TM cosφ = = 1 TM y k y β TM x β ( ) TM kx, ky k x 2 π /b 2 π /a E-plane scan 32

Grating Lobes Grating lobes occur when one or more of the higher-order Floquet waves propagates in space. For a finite-size array, this corresponds to a secondary beam that gets radiated. ( θg, φg) ( θ, φ ) z Probe W L (,) a ( mn, ) y b Dielectric layer Metal patch x Ground plane 33

Grating Lobes (cont.) ( for some ( )) ktpq < k ( pq, ), Grating wave for (-1,) k y ( ) k xp, k yq k x k 2 π /b ( kx, ky) 2 π /a 34

Pozar Circle Diagram u k = k sinθ cosφ x v k = k Define H-plane scan sinθ sinφ y v Visible space circle φ φ uv u u + v = k sin θ 2 2 2 2 + = 2 2 u v k θ sin k tan φ = v/ u = tanφ uv φ = φ uv E-plane scan 35

Pozar Circle Diagram (cont.) tpq ( ) k < k uv visible space circle for, Grating Lobes So, we require that k + k < k 2 2 2 xp yq for 2 2 2 u + v < k The first inequality gives us or 2 2 2π p 2πq 2 x + + y + < k k k a b 2 2 2π p 2πq 2 sinθcosφ + + sinθsinφ + < k k k a b or 2 2 2π p 2πq u+ + v+ < k a b 2 36

Pozar Circle Diagram (cont.) or 2 2 2π p 2πq u + v < k a b 2 ( p) ( q) or 2 2 2 u u v v k pq + < (we are inside a shifted (, ) visible space circle) u p 2π p 2πq, vq a b Summary of grating lobe condition: ( p) ( q) 2 2 u u + v v < k u + v < k 2 2 2 2 Part of the interior of the (p,q) circle is also inside the visible space circle. 37

Pozar Circle Diagram (cont.) Grating lobe region ( p) ( q) 2 2 u u + v v < k u + v < k 2 2 2 v 2 u v p q 2π p = a 2π q = b (, 1) ( up, vq) + k ( 1, ) k ( 1, ) u (,1) 38

Pozar Circle Diagram (cont.) This diagram shows when grating lobes occur in the principal scan planes. u = k sinθ cosφ v = k sinθ sinφ v (, 1) H-plane scan ( 1, ) ( 1, ) u (,1) E-plane scan 39

Pozar Circle Diagram (cont.) To avoid grating lobes for all scan angles, we require: u v > 2k 1 > 2k 1 (The circles do not overlap.) or 2π > a 2π > b 2k 2k or ka kb < π < π Hence a < λ /2 b < λ /2 4

Pozar Circle Diagram (cont.) k tpq TM Scan Blindness ( uv, ) = β for visible space circle So, we require that k + k = β 2 2 2 xp yq TM The equation gives us for 2 2 2 u + v < k 2 2 2π p 2πq 2 x + + ky + = βtm k a b or 2 2 2π p 2πq 2 sinθcosφ + + ksinθsinφ + = βtm k a b or 2 2 2π p 2πq u+ + v+ = β a b 2 TM 41

Pozar Circle Diagram (cont.) or 2 2 2π p 2πq u + v = a b β 2 TM or 2 2 2 ( u up ) + ( v vq ) = βtm Summary of scan blindness condition: ( u u ) ( v v ) 2 2 2 p q TM + = β u + v < k 2 2 2 where u v p q 2π p = a 2π q = b Part of the boundary of the (p,q) circle is inside the visible space circle. 42

Pozar Circle Diagram (cont.) Scan blindness curve ( u u ) ( v v ) 2 2 2 p q TM + = β u + v < k 2 2 2 v u v p q 2π p = a 2π q = b (, 1) ( up, vq) + β TM ( 1, ) k ( 1, ) u (,1) 43

Pozar Circle Diagram (cont.) To avoid scan blindness for all scan angles, we require or u v > β + 1 TM > β + 1 TM k k (The circles do not overlap.) 2π > βtm a + k 2π > βtm b + k or 2π ka 2π kb > β / k + 1 TM > β / k + 1 TM a / λ < b / λ < Hence β β TM TM 1 1 / k + 1 / k + 1 44