Fractional operators with exponential kernels and a Lyapunov type inequality

Similar documents
Contraction Mapping Principle Approach to Differential Equations

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Positive and negative solutions of a boundary value problem for a

5.1-The Initial-Value Problems For Ordinary Differential Equations

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

New Inequalities in Fractional Integrals

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

4.8 Improper Integrals

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Procedia Computer Science

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

Yan Sun * 1 Introduction

0 for t < 0 1 for t > 0

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

e t dt e t dt = lim e t dt T (1 e T ) = 1

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Fractional Calculus. Connor Wiegand. 6 th June 2017

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

1. Introduction. 1 b b

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

September 20 Homework Solutions

Mathematics 805 Final Examination Answers

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

SOLUTION FOR A SYSTEM OF FRACTIONAL HEAT EQUATIONS OF NANOFLUID ALONG A WEDGE

How to prove the Riemann Hypothesis

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

3. Renewal Limit Theorems

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

..,..,.,

Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

Some Inequalities variations on a common theme Lecture I, UL 2007

REAL ANALYSIS I HOMEWORK 3. Chapter 1

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

On Tempered and Substantial Fractional Calculus

1.0 Electrical Systems

MTH 146 Class 11 Notes

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

Necessary and Sufficient Conditions for Asynchronous Exponential Growth in Age Structured Cell Populations with Quiescence

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

FRACTIONAL-order differential equations (FDEs) are

Chapter Direct Method of Interpolation

Average & instantaneous velocity and acceleration Motion with constant acceleration

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

A generalized Lyapunov inequality for a higher-order fractional boundary value problem

ON THE OSCILLATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

Soliton Scattering on the External Potential in Weakly Nonlocal Nonlinear Media

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

Solutions to Problems from Chapter 2

Physics 2A HW #3 Solutions

Minimum Squared Error

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

The Dynamics of Two Harvesting Species with variable Effort Rate with the Optimum Harvest Policy

Chapter 2. First Order Scalar Equations

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

IX.2 THE FOURIER TRANSFORM

Research Article On the Definitions of Nabla Fractional Operators

COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH MITTAG-LEFFLER NON-SINGULAR KERNEL

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

Minimum Squared Error

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

( ) ( ) ( ) ( ) ( ) ( y )

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Undetermined coefficients for local fractional differential equations

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L )

LAPLACE TRANSFORMS. 1. Basic transforms

Existence of non-oscillatory solutions of a kind of first-order neutral differential equation

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

PART V. Wavelets & Multiresolution Analysis

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

Available online at Pelagia Research Library. Advances in Applied Science Research, 2011, 2 (3):

Fractional Euler-Lagrange Equations Applied to Oscillatory Systems

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Transcription:

Abdeljwd Advnces in Difference Equions (2017) 2017:313 DOI 10.1186/s13662-017-1285-0 RESEARCH Open Access Frcionl operors wih exponenil kernels nd Lypunov ype inequliy Thbe Abdeljwd* * Correspondence: bdeljwd@psu.edu.s Deprmen of Mhemics nd Physicl Sciences, Prince Suln Universiy, P.O. Box 66833, Riydh, 11586, Sudi Arbi Absrc In his ricle, we exend frcionl clculus wih nonsingulr exponenil kernels, iniied recenly by Cpuo nd Fbrizio, o higher order. The exension is given o boh lef nd righ frcionl derivives nd inegrls. We prove exisence nd uniqueness heorems for he Cpuo (CFC) nd Riemnn (CFR) ype iniil vlue problems by using Bnch conrcion heorem. Then we prove Lypunov ype inequliy for he Riemnn ype frcionl boundry vlue problems wihin he exponenil kernels. Illusrive exmples re nlyzed nd n pplicion bou Surm-Liouville eigenvlue problem in he sense of his frcionl clculus is given s well. Keywords: CFC frcionl derivive; CFR frcionl derivive; Lypunov inequliy; boundry vlue problem; higher order; exponenil kernel 1 Inroducion nd preliminries Frcionl clculus [ ] hs been rcive o mny reserchers in he ls hree decdes or so. Some reserchers hve found i necessry o define new frcionl derivives wih differen singulr or nonsingulr kernels in order o provide more sufficien re o model more rel-world problems in differen fields of science nd engineering [, ]. In [ ] he uhors sudied new ype of frcionl derivives where he kernel is of exponenil ype nd in [, ] he uhors sudied new frcionl derivives wih Mig-Leffler kernels. For he discree couner prs we refer o he work in [ ]. In his work we exend he frcionl clculus wih exponenil kernels proposed nd sudied in [, ] o higher order, prove some exisence nd uniqueness heorems nd prove Lypnouv ype inequliies for boundry vlue problems in he frme of his clculus. The exension is chieved for boh lef nd righ frcionl derivives nd inegrls so h we prepre for inegrion by prs in higher order o serve frcionl vriionl clculus in he frme of his clculus [, ]. Definiion ([ ]) For α >, R nd f rel-vlued funcion defined on [, ), he lef Riemnn Liouville frcionl inegrl is defined by α I f () = (α) ( s)α f (s) ds. The Auhor(s) 2017. This ricle is disribued under he erms of he Creive Commons Aribuion 4.0 Inernionl License (hp://creivecommons.org/licenses/by/4.0/), which permis unresriced use, disribuion, nd reproducion in ny medium, provided you give pproprie credi o he originl uhor(s) nd he source, provide link o he Creive Commons license, nd indice if chnges were mde.

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 2 of 11 This is frcionlizing of he n-iered inegrl ( I n f )()= 1 (n 1)! ( s)n 1 f (s) ds.therigh frcionl inegrl ending b is defined by ( I α b f ) ()= 1 Ɣ(α) (s ) α 1 f (s) ds. Definiion 2 ([8, 15]) Le f H 1 (, b), < b, α [0, 1], hen he definiion of he new (lef Cpuo) frcionl derivive in he sense of Cpuo nd Fbrizio becomes D α f ) ()= B(α) 1 α f ( x)α [ α (x)e 1 α ] dx (1) nd in he lef Riemnn-Liouville sense hs he following form: D α f ) ()= B(α) d 1 α d The ssocied frcionl inegrl is Iα f ) ()= 1 α B(α) f ()+ α B(α) ( x)α [ α f (x)e 1 α ] dx. (2) f (s) ds, (3) where B(α) > 0 is normlizion funcion sisfying B(0) = B(1) = 1. In he righ cse we hve D α b f ) ()= B(α) 1 α f (x )α [ α (x)e 1 α ] dx (4) nd in he righ Riemnn-Liouville sense hs he following form: D α b f ) ()= B(α) d 1 α d The ssocied frcionl inegrl is Ib α f ) ()= 1 α B(α) f ()+ α B(α) (x )α [ α f (x)e 1 α ] dx. (5) f (s) ds. (6) In [8, 15], i ws verified h IαCFR D α f )()=f() nd D αcf Iα f )()=f(). Also, in he righ cse Ib αcfr D α b f )()=f() nd(cfr D α b CF Ib α f )()=f(). From [8, 15]werecllhe relion beween he Riemnn-Liouville nd Cpuo new derivives s D α f ) ()= D α f ) () B(α) 1 α f ()e α 1 α ( )α. (7) In nex secion, we exend Definiion 2 o rbirry α >0. Lemm 1 ([15]) For 0<α <1,we hve IαCFC D α f ) (x)=f (x) f ()

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 3 of 11 nd I α b CFC D α b f ) (x)=f (x) f (b). One of our min purposes in his ricle is o obin he corresponding resul of he following populr Lypunov inequliy resul for CFR boundry vlue problems. Theorem 1 ([21]) If he boundry vlue problem y ()+q()y()=0, (, b), y()=y(b)=0, hs nonrivil soluion, where q is rel coninuous funcion, hen q(s) ds > 4 b. (8) The generlizion of he bove Lypunov inequliy o frcionl boundry vlue problems hs been he ineres of some reserchers in he ls few yers. For exmples, we refer he reder o [22 26]. For discree frcionl counerprs of Lypunov inequliies we refero[27] ndforheq-frcionl ypes we refer o [28]. For recen exensions o higher order nd Lypunov ype inequliies for frcionl operors wih Mig-Leffler kernels nd frcionl difference operors wih discree exponenil kernels we refer o [29]nd [30], respecively. For he Lypnunov inequliies of frcionl difference operors wih discree Mig-Leffer kernels we refer o [31]. 2 The higher order frcionl derivives nd inegrls Definiion 3 Le n < α n +1ndf be such h f (n) H 1 (, b). Se β = α n. Then β (0, 1] nd we define D α f ) ()= D β f (n)) (). (9) In he lef Riemnn-Liouville sense hs his he following form: D α f ) ()= D β f (n)) (). (10) The ssocied frcionl inegrl is Iα f ) ()= ( I ncf Iβ f ) (). (11) Noe h if we use he convenion h ( I 0 f )()=f()henforhecse0<α 1wehve β = α nd hence ( I α f )()=( I α f )() s in Definiion 2. Also, he convenion f (0) ()=f() leds o D α f )()= D α f )()nd D α f )()= D α f )()for0<α 1. Remrk 1 In Definiion 3, ifweleα = n +1henβ =1ndhence D α f )() = D 1 f (n) )()=f (n+1) (). Also, by noing h I1 f )()=( I 1 f )(), we see h for α = n +1 we hve Iα f )() =( I n+1 f )(). Also, for 0 < α 1 we reobin he conceps defined in Definiion 2. Therefore, our generlizion o he higher order cse is vlid. Anlogously, in he righ cse we hve he following exension.

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 4 of 11 Definiion 4 Le n < α n +1ndf be such h f (n) H 1 (, b). Se β = α n. Then β (0, 1] nd we define D α b f ) ()= D β b ( 1)n f (n)) (). (12) In he righ Riemnn-Liouville sense i hs he following form: D α b f ) ()= D β b ( 1)n f (n)) (). (13) The ssocied frcionl inegrl is I α b f ) ()= ( I n b CF I β b f ) (). (14) The nex proposiion explins he cion of he higher order inegrl operor CF Iα on he higher order CFR nd CFC derivives nd vice vers, nd he cion of he CFR derivive on he CF inegrl. Proposiion 1 For u() defined on [, b] nd α (n, n +1],for some n N 0, we hve: D αcf Iα u)()=u(). IαCFR D α u)()=u() n 1 u (k) () ( ) k. IαCFC D α u)()=u() n u (k) () ( ) k. Proof ByDefiniion3 nd he semen fer Definiion 2 we hve D αcf Iα u ) ( ()= CFR D β dn d n I ncf ) Iβ u () = D β CF Iβ u ) ()=u(), (15) where β = α n. ByDefiniion3 nd he semen fer Definiion 2 we hve IαCFR D α u ) ()= ( I ncf CFR Iβ D β u (n)) () n 1 = I n u (n) ()=u() u (k) () ( ) k. (16) By Lemm 1 pplied o f ()=u (n) () we hve IαCFC D α u ) ()= I n I β CFC D β u (n) ()= I n[ u (n) () u (n) () ] n 1 = u() = u() n Similrly,forherighcsewehvehefollowing. u (k) () ( ) k u (n) ( )n () n! u (k) () ( ) k. (17)

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 5 of 11 Proposiion 2 For u() defined on [, b] nd α (n, n +1],for some n N 0, we hve: D α b CF I α b u)()=u(). I α b CFR D α b u)()=u() n 1 ( 1) k u (k) (b) (b ) k. I α b CFC D α b u)()=u() n ( 1) k u (k) (b) (b ) k. Exmple 1 Consider he iniil vlue problem: D α y ) ()=K(), [, b], (18) where K() is coninuouson [, b]. We consider wo cses depending on he order α. Assume 0<α 1, y()=c nd K()=0. By pplying CF Iα nd mking use of Proposiion 1, we ge he soluion y()=c + 1 α B(α) K()+ α B(α) K(s) ds. Noice h he condiion K()=0verifies h he iniil condiion y()=c.also noice h when α 1 we reobin he soluion of he ordinry iniil vlue problem y ()=K(), y()=c. Assume 1<α 2, K()=0, y()=c 1, y ()=c 2. By pplying CF Iα nd mking use of Proposiion 1 nd Definiion 3 wih β = α 1,wegehesoluion y()=c 1 + c 2 ( )+ 2 α K(s) ds + α 1 ( s)k(s) ds. Noice h he soluion y() verifies y()=c 1 wihou he use of K()=0. However, i verifies y ()=c 2 under he ssumpion K()=0. Also, noe h when α 2 we reobin he soluion of he second order ordinry iniil vlue problem y ()=K(). In he nex secion, we prove exisence nd uniqueness heorems for some ypes of CFC nd CFR iniil vlue problems. Exmple 2 Consider he CFC boundry vlue problem D α y ) ()+q()y()=0, 1<α 2, < < b, y()=y(b)=0. (19) Then β = α 1 nd by Proposiion 1 pplying he operor CF Iα will resul in he soluion y()=c 1 + c 2 ( ) Iα q( )y( ) ) (). Bu Iα q( )y( ))()= 1 β B(β) q(s)y(s) ds + β y()=c 1 + c 2 ( ) 2 α B(β) I 2 q()y(). Hence, he soluion hs he form q(s)y(s) ds α 1 The boundry condiions imply h c 1 =0nd c 2 = 2 α (b ) q(s)y(s) ds + α 1 (b ) ( s)q(s)y(s) ds. (b s)q(s)y(s) ds.

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 6 of 11 Hence, (2 α)( ) y()= (b ) 2 α (α 1)( ) q(s)y(s) ds (b ) q(s)y(s) ds α 1 (b s)q(s)y(s) ds ( s)q(s)y(s) ds. (20) 3 Exisence nd uniqueness heorems for he iniil vlue problem ypes In his secion we prove exisence uniqueness heorems for ABC nd ABR ype iniil vlue problems. Theorem 2 Consider he sysem D α y ) ()=f (, y() ), [, b], 0 < α 1, y()=c, (21) such h f (, y()) = 0, A( 1 α B(α) + α(b ) B(α) )<1,nd f (, y 1 ) f (, y 2 ) A y 1 y 2, A >0.Here f :[, b] R R nd y :[, b] R. Then he sysem (21) hs unique soluion of he form y()=c + CF Iα f (, y() ). (22) Proof Firs, wih he help of Proposiion 1, (7) nd king ino ccoun h f (, y()) = 0, i is srighforwrd o prove h y() sisfies he sysem (21) if nd only if i sisfies (22). Le X = {x : mx [,b] x() < } be he Bnch spce endowed wih he norm x = mx [,b] x().onx define he liner operor (Tx)()=c + CF Iα f (, x() ). Then, for rbirry x 1, x 2 X nd [, b], we hve by ssumpion (Tx 1 )() (Tx 2 )() = CF Iα[ f (, x 1 () ) f (, x 2 () )] ( ) 1 α α(b ) A + x 1 x 2, (23) B(α) B(α) nd hence T is conrcion. By he Bnch conrcion principle, here exiss unique x X such h Tx = x nd hence he proof is complee. Remrk 2 Similr exisence nd uniqueness heorems cn be proved for he sysem (21) wih higher order by mking use of Proposiion 1. The condiion f (, y()) = 0 lwys cnnobevoidedswehveseeninexmple1wih f (, y()) = K(). As resul of Theorem 2 we conclude h he frcionl liner iniil vlue problem D α y ) ()=μy(), μ R, [, b], 0 < α 1, y()=c, only cn hve he rivil soluion unless α = 1. Indeed, he soluion sisfies y() =c + μ 1 α αμ y()+ B(α) B(α) y(s) ds.thissoluionisonlyverified if (1 α)y()=0.

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 7 of 11 Theorem 3 Consider he sysem D α y ) ()=f (, y() ), [, b], 1 < α 2, y()=c, (24) A (α 1)(b )2 such h ((2 α)(b )+ )<1nd f (, y B(α 1) 2 1 ) f(, y 2 ) A y 1 y 2, A >0. Also, f :[, b] R R nd y :[, b] R. Then he sysem (21) hs unique soluion of he form y()=c + CF Iα f (, y() ) = c + 2 α f ( s, y(s) ) ds + α 1 ( I 2 f (, y( ) )) (). (25) Proof If we pply CF Iα o sysem (24) nd mke use of Proposiion 1 wih β = α 1,henwe obin he represenion (25). Conversely, if we pply CFR D α, mke use of Proposiion 1 nd noe h CFR D α = CFR D β d d c =0, we obin he sysem (24). Hence, y() sisfies he sysem (24) if nd only if i sisfies (25). Le X = {x : mx [,b] x() < } be he Bnch spce endowed wih he norm x = mx [,b] x().onx define he liner operor (Tx)()=c + CF Iα f (, x() ). Then, for rbirry x 1, x 2 X nd [, b], we hve by ssumpion (Tx1 )() (Tx 2 )() = CF Iα[ f (, x 1 () ) f (, x 2 () )] ) A (α 1)(b )2 ((2 α)(b )+ x 1 x 2, (26) 2 nd hence T is conrcion. By he Bnch conrcion principle, here exiss unique x X such h Tx = x nd hence he proof is complee. 4 The Lypunov inequliy for he CFR boundry vlue problem In his secion, we prove Lypunov inequliy for n CFR boundry vlue problem of order 2 < α 3. Consider he boundry vlue problem D α y ) ()+q()y()=0, 2<α 3, (, b), y()=y(b)=0. (27) Lemm 2 y() is soluion of he boundry vlue problem (27) ifndonlyifisisfieshe inegrl equion y()= G(, s)t ( s, y(s) ) ds, (28)

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 8 of 11 where G(, s)= }, s b, b ( ( )(b s) ( s)), s b, b { ( )(b s) nd T (, y() ) = Iβ q( )y( ) ) ()= 1 β B(β) q()y()+ β ( I 1 q( )y( ) ) (), β = α 2. B(β) Proof Apply he inegrl CF Iα o (27) nd mke use of Definiion 3 nd Proposiion 1 wih n =2ndβ = α 2oobin 1 b y()=c 1 + c 2 ( ) ( I 2 T (, y( ) )) () = c 1 + c 2 ( ) ( s)t ( s, y(s) ) ds. (29) The condiion y()=0implieshc 1 = 0 nd he condiion y(b)=0implieshc 2 = (b s)t(s, y(s)) ds nd hence y()= b (b s)t ( s, y(s) ) ds Then he resul follows by spliing he inegrl (b s)t ( s, y(s) ) ds = (b s)t ( s, y(s) ) ds + ( s)q(s)t ( s, y(s) ) ds. (b s)t ( s, y(s) ) ds. Lemm 3 The Green s funcion G(, s) defined in Lemm 2 hs he following properies: G(, s) 0 for ll, s b. mx [,b] G(, s)=g(s, s) for s [, b]. H(s, s) hs unique mximum, given by ( + b mx G(s, s)=g s [,b] 2, + b ) = 2 (b ). 4 Proof Iisclerhg 1 (, s)= ( )(b s) 0. Regrding he pr g b 2 (, s)=( ( )(b s) ( s)) we b see h ( s)= b (b ( + (s )(b ) ( ) )) nd h + (s )(b ) ( ) s if nd only if s. Hence, we conclude h g 2 (, s) 0 s well. Hence, he proof of he firs pr is complee. Clerly, g 1 (, s) is n incresing funcion in. Differeniing g 2 wih respec o for every fixed s we see h g 2 is decresing funcion in. Leg(s)=G(s, s)= (s )(b s). Then one cn show h g (s)=0if s = +b b proof is concluded by verifying h g( +b 2 nd hence he 2 b )= 4. Inhenexlemm,weesimeT(, y()) for funcion y C[, b]. Lemm 4 For y C[, b] nd 2<α 3, β = α 2,we hve for ny [, b] T (, y() ) R() y,

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 9 of 11 where [ 3 α R()= q() α 2 + B(α 2) B(α 2) q(s) ds ]. Theorem 4 If he boundry vlue problem (27) hs nonrivil soluion, where q() is rel-vlued coninuous funcion on [, b], hen R(s) ds > 4 b. (30) Proof Assume y Y = C[, b] is nonrivil soluion of he boundry vlue problem (27), where y = sup [,b] y(). By Lemm 2, y mus sisfy y()= G(, s)t ( s, y(s) ) ds. Then, by using he properies of he Green s funcion G(, s) proved in Lemm 3 nd Lemm 4, we come o he conclusion h y < b 4 R(s) ds y. From his (30) follows. Remrk 3 Noe h if α 2 +,henr()endso q() nd hence one obins he clssicl Lypunov inequliy (8). Exmple 3 Consider he following CFR Surm-Liouville eigenvlue problem (SLEP) of order 2 < α 3: 0 D α y ) ()+λy()=0, 0< <1,y(0) = y(1) = 0. (31) If λ is n eigenvlue of (31), hen by Theorem 4 wih q()=λ,wehve [ 3 α α 2 ( T()= λ + 0I 1 λ ) ] () B(α 2) B(α 2) [ 3 α = λ B(α 2) + α 2 B(α 2) Hence, we mus hve 1 [ ] 3 α T(s) ds = λ B(α 2) + α 2 >4. 2B(α 2) 0 Hence, [ ] 3 α λ >4 B(α 2) + α 2 1. 2B(α 2) ]. (32)

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 10 of 11 Noice h he limiing cse α 2 + implies h λ > 4. This is he lower bound for he eigenvlues of he ordinry eigenvlue problem: y ()+λy()=0, 0< <1,y(0) = y(1) = 0. 5 Conclusions Frcionl derivives nd heir corresponding inegrl operors re of impornce in modeling vrious problems in engineering, science nd medicine. To provide he reserchers wih he possibiliy of modeling by mens of higher order rbirry dynmicl sysems we exended frcionl clculus whose derivives depend on nonsingulr exponenil funcion kernels o higher order. The corresponding higher order inegrl operors hve been defined s well nd confirmed. The righ frcionl exension is lso considered. To se up he bsic conceps we proved exisence nd uniqueness heorems by mens of he Bnch fixed poin heorem for iniil vlue problems in he frme of CFC nd CFR derivives. We relized h he condiion f (, y()) = 0 is necessry o gurnee unique soluion nd hence he frcionl liner iniil vlue problem wih consn coefficiens resuls in he rivil soluion unless he order is posiive ineger. We used our exension o higher order o prove Lypunov ype inequliy for CFR boundry vlue problem wih order 2 < α 3 nd hen obined he clssicl ordinry cse when α ends o 2 from he righ. This proves differen behvior from he clssicl frcionl cse, where he Lypunov inequliy ws proved for frcionl boundry problem of order 1 < α 2 nd he clssicl ordinry cse ws verified when α ends o 2 from lef. In connecion o his behvior, we propose he following open problem: Isipossibleoformule sequenil CFR boundry vlue problem whose Green s funcion is so nice s o prove Lypunov ype inequliy? Acknowledgemens The uhor would like o hnk Prince Suln Universiy for funding his work hrough reserch group Nonliner Anlysis Mehods in Applied Mhemics (NAMAM) group number RG-DES-2017-01-17. Compeing ineress The uhors declre h hey hve no compeing ineress. Auhor s conribuions The uhor red nd pproved he finl mnuscrip. Publisher s Noe Springer Nure remins neurl wih regrd o jurisdicionl clims in published mps nd insiuionl ffiliions. Received: 9 My 2017 Acceped: 18 July 2017 References 1. Smko, G, Kilbs, AA, Mrichev, OI: Frcionl Inegrls nd Derivives: Theory nd Applicions. Gordon & Brech, Yverdon (1993) 2. Podlubny, I: Frcionl Differenil Equions. Acdemic Press, Sn Diego (1999) 3. Kilbs, A, Srivsv, MH, Trujillo, JJ: Theory nd Applicion of Frcionl Differenil Equions. Mhemics Sudies, vol. 204. Norh-Hollnd, Amserdm (2006) 4. Tenreiro Mchdo, JA, Kirykov, V, Minrdi, F: A poser bou he recen hisory of frcionl clculus. Frc. Clc. Appl. Anl. 13(3), 329-334 (2010) 5. Tenreiro Mchdo, JA: Frcionl dynmics of sysem wih pricles subjeced o impcs. Commun. Nonliner Sci. Numer. Simul. 16(12),4596-4601 (2011) 6. Blenu, D, Diehelm, K, Scls, E, Trujillo, JJ: Frcionl Clculus: Models nd Numericl Mehods, 2nd edn. (2016) 7. Bozkur, F, Abdeljwd, T, Hjji, MA: Sbiliy nlysis of frcionl order differenil equion model of brin umor growh depending on he densiy. Appl. Compu. Mh. 14(1),50-62 (2015) 8. Cpuo, M, Fbrizio, M: A new definiion of frcionl derivive wihou singulr kernl. Prog. Frc. Differ. Appl. 1(2), 73-85 (2015)

Abdeljwd Advnces in Difference Equions (2017) 2017:313 Pge 11 of 11 9. Losd, J, Nieo, JJ: Properies of new frcionl derivive wihou singulr kernl. Prog. Frc. Differ. Appl. 1(2), 87-92 (2015) 10. Angn, A, Blenu, D: Cpuo-Fbrizio derivive pplied o groundwer flow wihin confined quifer. J. Eng. Mech. 143(5), Aricle ID D4016005 (2017) 11. Blenu, D, Mouslou, A, Rezpour, S: A new mehod for invesiging pproxime soluions of some frcionl inegro-differenil equions involving he Cpuo-Fbrizio derivive. Adv. Differ. Equ. 2017,Aricle ID 51 (2017) 12. Gomez-Aguilr, JF, Blenu, D: Schrodinger equion involving frcionl operors wih non-singulr kernel. J. Elecromgn. Wves Appl. 31(7),752-761 (2017) 13. Angn, A, Blenu, D: New frcionl derivive wih non-locl nd non-singulr kernl. Therm. Sci. 20(2),757-763 (2016) 14. Abdeljwd, T, Blenu, D: Inegrion by prs nd is pplicions of new nonlocl frcionl derivive wih Mig-Leffler nonsingulr kernel. J. Nonliner Sci. Appl. 10(3), 1098-1107 (2017) 15. Abdeljwd, T, Blenu, D: On frcionl derivives wih exponenil kernel nd heir discree versions. J. Rep. Mh. Phys. 80(1), 11-27 (2017) 16. Abdeljwd, T, Blenu, D: Discree frcionl differences wih nonsingulr discree Mig-Leffler kernels. Adv. Differ. Equ. 2016, Aricle ID 232 (2016). doi:10.1186/s13662-016-0949-5 17. Abdeljwd, T, Blenu, D: Monooniciy resuls for frcionl difference operors wih discree exponenil kernels. Adv. Differ. Equ. 2017, Aricle ID 78 (2017). doi:10.1186/s13662-017-1126-1 18. Abdeljwd, T, Blenu, D: Monooniciy resuls for nbl frcionl difference operor wih discree Mig-Leffler kernels. Chos Solions Frcls (2017). doi:10.1016/j.chos.2017.04.006 19. Blenu, D, Abdeljwd, T, Jrd, F: Frcionl vriionl principles wih dely. J. Phys. A, Mh. Theor. 41(31), 315403 (2008) 20. Jrd, F, Abdeljwd, T, Blenu, D: Frcionl vriionl principles wih dely wihin Cpuo derivives. Rep. Mh. Phys. 65, 17-28 (2010) 21. Lypunov, AM: Probleme générl de l sbilié du mouvemen. Ann. Fc. Sci. Univ. Toulouse 2, 27-247 (1907). Reprined in: Ann. Mh. Sudies, No. 17, Princeon (1947) 22. Ferreir, RAC: A Lypunov-ype inequliy for frcionl boundry vlue problem. Frc. Clc. Appl. Anl. 6(4), 978-984 (2013) 23. Chdouh, A, Torres, DFM: A generlized Lypunov s inequliy for frcionl boundry vlue problem. J. Compu. Appl. Mh. 312, 192-197 (2017) 24. Jleli, M, Sme, B: Lypunov-ype inequliies for frcionl boundry vlue problems. Elecron. J. Differ. Equ. 2015, Aricle ID 88 (2015) 25. O Regn, D, Sme, B: Lypunov-ype inequliies for clss of frcionl differenil equions. J. Inequl. Appl. 2015, Aricle ID 247 (2015) 26. Rong, J, Bi, C: Lypunov-ype inequliy for frcionl differenil equion wih frcionl boundry condiions. Adv. Differ. Equ. 2015, Aricle ID 82 (2015) 27. Ferreir, RAC: Some discree frcionl Lypunov-ype inequliies. Frc. Differ. Clc. 5(1), 87-92 (2015) 28. Jleli, M, Sme, B: A Lypunov-ype inequliy for frcionl q-difference boundry vlue problem. J. Nonliner Sci. Appl. 9,1965-1976 (2016) 29. Abdeljwd, T: A Lypunov ype inequliy for frcionl operors wih nonsingulr Mig-Leffler kernel. J. Inequl. Appl. 2017, Aricle ID 130 (2017). doi:10.1186/s13660-017-1400-5 30. Abdeljwd, T, Al-Mdlll, QM, Hjji, MA: Arbirry order frcionl difference operors wih discree exponenil kernels nd pplicions. Discree Dyn. N. Soc. 2017,Aricle ID4149320 (2017) 31. Abdeljwd, T, Mdjidi, F: Lypunov-ype inequliies for frcionl difference operors wih discree Mig-Leffler kernel of order 2 < α < 5/2. Eur. Phys. J. Spec. Top. (2017, o pper)