MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES

Similar documents
ESS 265 Spring Quarter 2005 Kinetic Simulations

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

Chapter 3: Vectors and Two-Dimensional Motion

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Chapter 6 Plane Motion of Rigid Bodies

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

Maximum Likelihood Estimation

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

CHAPTER 10: LINEAR DISCRIMINATION

Name of the Student:

1 Constant Real Rate C 1

Reinforcement learning

Physics 120 Spring 2007 Exam #1 April 20, Name

T h e C S E T I P r o j e c t

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

( ) () we define the interaction representation by the unitary transformation () = ()

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

Rotations.

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Flow Decomposition and Large Deviations

An Approach to the Representation of Gradual Uncertainty Resolution in Stochastic Multiperiod Planning

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

P a g e 5 1 of R e p o r t P B 4 / 0 9

Weights of Markov Traces on Cyclotomic Hecke Algebras

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Cohen Macaulay Rings Associated with Digraphs

A. Inventory model. Why are we interested in it? What do we really study in such cases.

Information Fusion Kalman Smoother for Time-Varying Systems

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

s = rθ Chapter 10: Rotation 10.1: What is physics?

Support Vector Machines

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations

H = d d q 1 d d q N d d p 1 d d p N exp

u(t) Figure 1. Open loop control system

ˆ x ESTIMATOR. state vector estimate

Reinforcement learning

Solution in semi infinite diffusion couples (error function analysis)

Matrix reconstruction with the local max norm

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

PHY2053 Summer C 2013 Exam 1 Solutions

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

arxiv: v1 [math.pr] 4 Jul 2014

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

Exam 1. Sept. 22, 8:00-9:30 PM EE 129. Material: Chapters 1-8 Labs 1-3

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

N 1. Time points are determined by the

X-Ray Notes, Part III

Simulation of Non-normal Autocorrelated Variables

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

P a g e 3 6 of R e p o r t P B 4 / 0 9

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Randomized Perfect Bipartite Matching

PHYS 1443 Section 001 Lecture #4

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Comparison of Differences between Power Means 1

A L A BA M A L A W R E V IE W

Notes on the stability of dynamic systems and the use of Eigen Values.

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Consider a Binary antipodal system which produces data of δ (t)

Field due to a collection of N discrete point charges: r is in the direction from

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

18.03SC Unit 3 Practice Exam and Solutions

Computer Propagation Analysis Tools

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Optimal control of Goursat-Darboux systems in domains with curvilinear boundaries

2/20/2013. EE 101 Midterm 2 Review

A Demand System for Input Factors when there are Technological Changes in Production

Chapter Lagrangian Interpolation

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

c- : r - C ' ',. A a \ V

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Physics 201, Lecture 5

Control Systems. Mathematical Modeling of Control Systems.

Let s treat the problem of the response of a system to an applied external force. Again,

2 shear strain / L for small angle

EECE 301 Signals & Systems Prof. Mark Fowler

Available online through ISSN

THE EQUIVALENCE OF GRAM-SCHMIDT AND QR FACTORIZATION (page 227) Gram-Schmidt provides another way to compute a QR decomposition: n

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Signals and Systems Linear Time-Invariant (LTI) Systems

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

7 Wave Equation in Higher Dimensions

Transcription:

Jounal of lgeba Numbe heo: dance and pplcaon Volume 5 Numbe 6 Page -9 alable a hp://cenfcadance.co.n DOI: hp://d.do.og/.86/janaa_7686 MRIX COMPUIONS ON PROJCIV MODULS USING NONCOMMUIV GRÖBNR BSS CLUDI GLLGO Depaameno de Maemáca Semnao de Álgeba Conuca-SC Unedad Naconal de Colomba Sede Bogoá Colomba e-mal: cmgallegoj@unal.edu.co bac Conuce poof of fac ha a abl fee lef S-module M wh ank( M ) ( S) fee whee (S) denoe he able ank of an aba ng S wee deeloped n [7] (ee alo [5] and [5]). ddonall n uch pape ae peened algohmc poof fo calculang pojece dmenon and o check whehe a lef S-module M abl fee. Gen a lef -module M wh a bjece kew PBW eenon we wll ue hee eul and Göbne bae heo o eablh algohm ha allow u o calculae effecel he pojece dmenon fo h module o check whehe abl fee o conuc mnmal peenaon and o oban bae fo fee module. Mahemac Subjec Clafcaon: Pma: 6Z5; Seconda: 6D 65. Kewod and phae: noncommuae Göbne bae kew PBW eenon abl fee module fee module compuaon of bae conuce algohm. Receed Jul 6 6 Scenfc dance Publhe

CLUDI GLLGO. Inoducon he Göbne bae heo pode u wh a emakable aa of ool fo he effece calculaon of dee algebac objec. We hae deeloped h heo fo kew PBW eenon (ee [5] and [9]) whch n un ha enabled u ca ou calculaon n a boad cla of noncommuae ng. In addon gen an aba lef -module M a bjece kew PBW eenon h Göbne bae heo along wh he eence of ma conuce eul ha allow o eablh algohm fo calculang he pojece dmenon of M o check whehe o no M abl fee and o oban effecel a ba when M a abl fee module wh ank( M ) ( S) wll enable u o peen houghou cuen acle effece algohm and compuaon of h knd fo module defned on kew PBW eenon. he ke ool fo hee algohm wll be he calculaon of lef and gh nee mace. Relaed o he compuaon of pojece dmenon we hae ha he followng noable geneal fac oe aba ng. S wll epeen an aba noncommuae ng. heoem.. Le M be an S-module and fm Pm fm fm f f f Pm Pm P P M (.) be a pojece eoluon of M. If m and hee e a homomophm gm : uch ha g f hen we hae he followng Pm Pm pojece eoluon of M: m m hm hm fm f f f Pm Pm Pm Pm P P M wh P m fm h : m hm : [ fm ]. gm (.)

MRIX COMPUIONS ON PROJCIV Poof. See [5] Popoon. Coolla.. Le M be an S-module and S fm f f f f f m S m m S m m S S M be a fne fee eoluon of M. Le bae m. hen (.) F be he ma of f n he canoncal m () If m and hee e a homomophm g : S S m uch ha g f hen we hae he followng fne fee eoluon of M: m m S m m h m hm fm S m S m m S m S M (.) f f wh h In a ma noaon f j fm : hm : [ fm ]. g m m G m he ma of g m and H j he ma of h n he canoncal bae j m m hen H m : m [ F G ] H :. m m m F () If m and hee e a homomophm : g S S uch ha g f hen we hae he followng fne peenaon of M: S S h h S M (.5) wh f h : h : [ f ]. g

CLUDI GLLGO In a ma noaon H : [ F G ] H :. f Poof. See [5] Coolla. Wh epec o abl feene he followng chaacezaon hold. heoem.. Le M be an S-module wh eac equence S f S f M ae equalen:. hen M ( M S) and he followng condon S () M abl fee. () M pojece. () M. () F ha a gh nee. () f ha a lef nee. Poof. See [5] heoem..5. Fnall egadng fee module we nclude below a ma conuce chaacezaon. Lemma.. Le S be a ng and M be a abl fee S-module gen b f f a mnmal peenaon S S M. Le g : S S uch ha g f. hen he followng condon ae equalen: S () M fee of dmenon. I () hee e a ma U GL ( S) uch ha UG whee G he ma of g n he canoncal bae. In uch cae he la column of U confom a ba fo M. Moeoe he f column of U confom he ma F of f n he canoncal bae.

MRIX COMPUIONS ON PROJCIV 5 () hee e a ma V GL ( S) uch ha he f column of V.e. V of GL ( S). Poof. See [5] Lemma..5. G concde wh G can be compleed o an neble ma Some defnon and elemena popee ae necea n wha follow. hee can alo be eewed n [7]. If S an aba ng S denoe he lef S-module of column of ze ; fo each f S-homomophm S S hee a ma aocaed o f n he canoncal bae of S and S denoed F : m( f ) and dpoed b column.e. F M ( S); moeoe f a S hen f ( a ) ( a F ). I aghfowad o how ha funcon m : HomS ( S S ) M ( S) bjece; and ha f g p S S a homomophm hen he ma of G gf n he canoncal bae m ( gf ) ( F ). hu f : S S an omophm f and onl f F GL ( S) and f C M ( S ) we hae ha column of C confom a ba of S f and onl f C GL ( S). When S commuae o when we conde gh module nead of lef module we hae ha f ( a) Fa and n uch cae he ma of a compoe homomophm gf gen b m ( gf ) m ( g) m( f ). Fuhe f S S : an omophm f and onl f F GL ( S); bede C GL ( S) f and onl f column confom a ba of S (ee Subecon. n [7]). Now le S be a ng; we a ha S afe he ank condon ( RC ) f fo an nege f S S an epmophm hen. Fuhemoe S an IBN ng (naan ba numbe) f fo an nege S S f and onl f. I well known ha RC mple IBN. Fom now on we wll aume ha all ng condeed n he peen pape ae RC. We hae he he followng elemena chaacezaon fo ( RC ) ng. f

6 CLUDI GLLGO Popoon.5. Le S be a ng. () S RC f and onl f gen an ma F M ( S) he followng condon hold: f F ha a gh nee hen. () S RC f and onl f gen an ma F M ( S) he followng condon hold: Poof. C.f. [7] Popoon. f F ha a lef nee hen.. Skew PBW enon In h econ we ecall he defnon of kew PBW (Poncaé- Bkhoff-W) eenon defned fl n [6] and we wll eew alo ome bac popee abou he polnomal nepeaon of h knd of noncommuae ng. wo pacula ubclae of hee eenon ae ecalled alo. Defnon.. Le R and be ng. We a ha a kew PBW eenon of R (alo called a σ -PBW eenon of R) f he followng condon hold: () R. () hee e fne elemen R-fee module wh ba uch ha a lef n α α α n n Mon( ) : { n n α ( α α ) N }. () Fo ee n and R { } hee e R {} c uch ha c R. (.)

MRIX COMPUIONS ON PROJCIV 7 () Fo ee j n hee e c j R { } uch ha j c j j R R Rn. (.) Unde hee condon we wll we σ( R). : n pacula cae of kew PBW eenon when all deaon δ ae zeo. nohe neeng cae when all σ ae bjece and he conan c j ae neble. We ecall he followng defnon (cf. [6]). Defnon.. Le be a kew PBW eenon. (a) qua-commuae f he condon () and () n Defnon. ae eplaced b ( ) Fo ee uch ha n and R { } hee e R {} c c. (.) ( ) Fo ee j n hee e c j R { } uch ha j c j j. (.) (b) bjece f σ bjece fo ee neble fo an < j n. n and c j emakable pope afe b kew PBW eenon peened below whch a he ame me aue u ha he algohm ued fnh. Popoon. (Hlbe Ba heoem). Le be a bjece kew PBW eenon of R. If R a lef (gh) Noehean ng hen alo a lef (gh) Noehean ng. Poof. See [] Coolla.. Snce he objec uded n he peen pape ae kew PBW eenon necea o guaanee he IBN and RC popee fo hee ng. Fo h we hae he followng mpoan fac:

8 CLUDI GLLGO heoem.. Le be a kew PBW eenon of a ng R. hen RC ( IBN ) f and onl f R RC ( IBN ). Poof. See [8] heoem.9. Remak.5. We deeloped he Göbne bae heo fo an bjece kew PBW eenon. Specfcall we eablhed a Buchbege algohm fo hee ng he compuaon of zge module a well a ome applcaon a membehp poblem calculaon of neecon quoen peenaon of a module compung fee eoluon he kenel and mage of an homomophm (ee Chape 5 and Chape 6 n [5] o [9]).. Compung he Inee of a Ma In h econ we wll peen an algohm ha deemne f a gen ecangula ma oe a bjece kew PBW eenon lef neble and n uch cae he algohm compue one of lef nee. mla algohm wll be conuced fo he gh de cae. We a wh he followng elemena fac abou lef neble mace. Popoon.. Le F be a ecangula ma of ze wh ene n a ng S. If F ha lef nee hen. Moeoe F ha a lef nee f and onl f he module geneaed b he ow of F concde wh S. Poof. he f aemen follow fom he fac ha we ae aumng he S RC (ee Popoon.5). Now uppoe ha F ha a lef nee L M ( S).e. LF. Defne he followng S-homomophm: I f : S S l : S S a ( a F ) b ( b L )

MRIX COMPUIONS ON PROJCIV 9 hen m ( f ) F and m ( l ) L. Whence m ( f l ) ( LF ) I I.e. f an epmophm. Hence Im( f ) S.e. he lef ubmodule geneaed b he ow of F concde wh he fee module S. Coneel uppoe ha he module geneaed b he ow of F concde wh S hen fo f defned a aboe hee e S a a uch ha f ( a ) e fo each and whee e e denoe he canoncal eco of S. hu f a [ a a a ] we hae [ a a a ] F a F() a F() e a F whee F ( j) denoe he j-h ow of F j. heefoe f L he ma whoe ow ae he eco a hen LF.e. F ha a lef nee. Coolla.. Le be a bjece kew PBW eenon and le F M ( ) be a ecangula ma oe. he algohm below deemne f F lef neble and n he poe cae compue a lef nee of F: I

CLUDI GLLGO lgohm fo he lef nee of a ma INPU: ecangula ma F M ( ). OUPU: ma L M ( ) afng LF I f e and n ohe cae. INIILIZION: IF < RURN IF le G : { g g } be a Göbne ba fo he lef ubmodule geneaed b ow of F and le { } e be he canoncal ba of. Ue he don algohm o ef f e G fo each. IF hee e ome e uch ha e G. RURN IF G le H M ( ) wh he pope G H F and conde K : [ k j ] M whee he k j ae uch ha e k g k g k g fo. hu I K G. RURN L : K H. ample.. Le σ( Q) defned hough he elaon. Gen he ma F

MRIX COMPUIONS ON PROJCIV we appl he aboe algohm n ode o ef f F ha a lef nee. Fo h we compue a Göbne ba of he lef module geneaed b he ow of F. Condeng he degle ode on Mon() wh and he OPRV ode on Mon( ) wh e > e a Göbne ba fo F { e e}. In conequence F ha a lef nee and fom calculaon obaned dung he poce of Buchbege algohm we hae ha L a lef nee fo F. Coolla.. Le F be a quae ma of ze wh ene n a ng S. hen F neble f and onl f he ow of F confom a ba of S. Poof. Le L M ( ) uch ha LF I FL. Fom LF I follow ha he ow of F geneae S. Le f and l be lke n he poof of Popoon.; nce FL I hen l f and heefoe S f a monomophm.e. Sz ( F ). hu he ow of F ae lneal ndependen and h complee he f mplcaon. Coneel nce he ow of F geneae S b Popoon. F ha a lef nee. Le L be a uch nee hen LF I. We hae FLF F h mple ha ( FL I ) F bu Sz ( F ) hen FL.e. F L. I

CLUDI GLLGO Coolla.5. Le be a bjece kew PBW eenon and F M ( ) a quae ma oe. he algohm below deemne whehe F neble and n he poe cae compue he nee of F: INPU: quae ma F M ( ). lgohm fo he nee of a quae ma OUPU: ma L M ( ) afng LF I FL f e and n ohe cae. INIILIZION: Ue he algohm n Coolla. o deemne f F lef neble. IF F no lef neble RURN LS Compue Sz ( F ) IF Sz ( F ) RURN LS Compue he mace H and K n he algohm of Coolla.. RURN L : K H. ample.6. Fo h eample we conde he adde analogue of he Wel algeba. Recall ha f k a feld hen k -algeba n ( q q n ) geneaed b n n and ubjec o he elaon: j j n j j j j j j q n whee q k {}. I no dffcul o how ha n ( q q n ) a bjece kew PBW eenon. We ake n q and ; q on Mon() we conde he degle ode and oe Mon( ) he OPRV ode wh e > e. Le F be he followng ma:

MRIX COMPUIONS ON PROJCIV F. We wan o check f column of F confom a ba fo and we know ha h ue f and onl f F neble. Ung he aboe algohm we a efng f F ha a lef nee; fo h pupoe we compue a Göbne ba of he lef -module geneaed b he ow of F.e. of he lef -module Im(F). Ung he Buchbege algohm fo module poble o how ha G { f f f } a Göbne ba e fo h module whee f e e f e and f e e e e. pplng he don 9 algohm we can check ha e G heefoe G. hu F ha no a lef nee and hence he column of F ae no a ba fo. Remak.7. If S a lef (o gh) Noehean ng hen ee epmophm α : S S an auomophm (ee Popoon. n []). h mple ha ee lef (o gh) Noehean ng WF (ee []). heefoe o e f F M ( S) neble enough o how ha F ha a gh o a lef nee. So n he aboe algohm when a bjece PBW eenon of a LGS ng no necea he compuaon of Sz S ( F ) o e whehe he ma neble would be uffcen o appl he algohm fo he lef nee gen n Coolla.. Now we wll conde he gh nee of a ecangula ma. We a wh he followng heoecal eul: Popoon.8. Le F be a ecangula ma of ze wh ene n he ng S. If F ha gh nee hen and he module of zge of he ubmodule geneaed b he ow of F zeo.e. Sz ( F ). In he ohe wod f F ha a gh nee hen he ow of F ae lneal ndependen.

CLUDI GLLGO Poof. o begn nce we ae aumng ha S RC (Popoon.5). Le L M ( S) uch ha FL. Conde he homomophm f and I l a n Popoon. hen f a monomophm. Hence ke ( f ).e. Sz ( F ). Popoon.9. Le F be a ecangula ma of ze wh ene n he ng S. If F ha gh nee hen. Moeoe F ha a gh nee f and onl f Sz ( F ) and Im ( F ) a ummand dec of S whee Im ( F ) denoe he module geneaed b he column of F.e. he module geneaed b he ow of F. Poof. o begn nce we ae aumng ha S RC (Popoon.5). Now le L M ( S) uch ha FL. Conde he homomophm f and l a n Popoon. hen l f.e. f a pl monomophm. hu S Im( f ) ke( l ) and Im ( f ) a dec ummand of S. Coneel le M be a ubmodule of ha S Im( f ) M. So gen I S S uch f S hee e unque elemen f Im( f ) and f M uch ha f f f. Defne he homomophm l S S : a l ( f ) h whee h S uch ha : f f ( h f ). B hpohe Sz ( F ) o f njece and we ge ha f l well defned. I no dffcul o how ha l an S-homomophm. Conequenl FL I.e. F ha a gh nee. l f and f : m( l ) S f L hen Remak.. If we had a compuaonal ool fo o check f a ubmodule of a fee module a ummand dec hen Popoon.9 would eablh an algohm o check he eence of a gh nee.

MRIX COMPUIONS ON PROJCIV 5 Followng [] and [5] conde a ma F : [ f ] M ( ) wh j whee a bjece kew PBW eenon endowed wh an noluon θ.e. a funcon θ : S S uch ha θ ( a b) θ( a) θ( b) θ ( ab) θ( b) θ( a) and θ fo all a b S. Noe ha θ ( ) and S hence θ an an-omophm of S. We defne ( F ) [ θ( f )]. ha f K M ( ) hen θ Obee : j θ ( FK ) θ( K ) θ( F ). (.) Popoon.. Le be a bjece kew PBW eenon endowed wh an noluon θ and le F : [ f ] M ( ) j wh. hen F ha a gh nee f and onl f fo each j e j whee G a Göbne ba of he lef -module geneaed b he column of θ ( F ) and { e j } j he canoncal ba of. Poof. G : [ g ] M ( ) a gh nee of F f and onl f j FG I and h equalen o a ha G e j f f f g j f f f g j j ; applng θ we oban e j θ( f ) θ( f ) ( ) ( ) θ f θ f θ( g j ) θ( gj ). θ( f ) θ( f )

6 CLUDI GLLGO hu G a gh nee of F f and onl f he canoncal eco of belong o he lef -module geneaed b he column of θ ( F ).e. e e θ( ). Le G be a Göbne ba of θ ( F ) hen G a F gh nee of F f and onl f fo each j e. G j Coolla.. Le be a bjece kew PBW eenon and F M ( ) be a ecangula ma oe. he algohm below deemne f F gh neble and n he poe cae compue he gh nee of F: lgohm fo he gh nee of a ma INPU: n noluon θ of ; a ecangula ma F M ( ). OUPU: ma H M ( ) afng FH I f e and n ohe cae. INIILIZION: IF < RURN IF le G : { g g } be a Göbne ba fo he lef ubmodule geneaed b column of θ ( F ) and le { } e j j be he canoncal ba of. Ue he don algohm o ef f e G fo each j. j IF hee e ome e j uch ha e j G. RURN IF G le J M ( ) wh he pope G J θ( F ) and conde K : [ k j ] M whee he k j ae uch ha e j k j g k j g kj g fo j. hu I K G. RURN H : θ( J ) θ( K ). Poof. pplng (.) we ge I K G K J θ( F ) θ( θ( K )) θ( θ( J )) θ( F ) θ( θ( J ) θ( K )) θ ( F ) θ( Fθ( J ) θ( K )) o I θ( Fθ( J ) θ( K )) θ( I ) and fom h we ge Fθ( J ) θ( K ). I

MRIX COMPUIONS ON PROJCIV 7 ample.. Le u conde he ng ( ) Q σ wh. Ung he aboe algohm we wll compue a gh nee fo F poded ha e. Fo h we conde he noluon θ on gen b ( ) θ and ( ). θ Wh h noluon we hae ha ( ). θ hu ( ). θ F We a compung a Göbne ba fo he lef module geneaed b he column of ( ). F θ We ge ha { } e e G a Göbne ba fo ( ). F θ In h cae F ha a gh nee and J uch ha ( ). F J G θ Snce I G hen I K and ( ) J L θ : a gh nee fo F whee ( ). θ J o fnd noluon of kew PBW eenon a dffcul ak o he aboe algohm no paccal. econd algohm fo eng he eence and compung a gh nee of a ma ue he heo of

8 CLUDI GLLGO Göbne bae fo gh module deeloped n [5]. Fo h we wll made a mple adapaon of Popoon. and Coolla. fo gh ubmodule ung he gh noaon. Popoon.. Le F be a ecangula ma of ze wh ene n a ng S. If F ha gh nee hen. Moeoe F ha a gh nee f and onl f he gh module geneaed b he column of F concde wh S. Poof. he f aemen follow fom Popoon.5. Now uppoe ha F ha a gh nee and le L be a ma uch ha FL I. Defne he followng homomophm of gh fee S-module: f : S S l : S S a Fa b Lb hen m ( f ) F and m () l L. Whence m ( f l) FL.e. f an epmophm. heefoe Im( f ) S.e. he gh ubmodule geneae b column of F concde wh he fee module S. Coneel f Im( F ) S hen fo f defned a aboe hee e a a S uch ha f ( a ) e fo each and whee e e denoe he canoncal eco of. S hu f [ a a a ] j j j j I a we hae [ ] ( ) ( a a a F a F ) Fa j F j j j j aj e j whee ( j F ) denoe he j-h column of F j. So f L he ma whoe column ae he eco a j hen FL I.e. F ha a gh nee. hu condeng he eul abou Göbne bae fo gh module (ee [5]) we hae he followng alenae algohm fo eng he eence of a gh nee.

MRIX COMPUIONS ON PROJCIV 9 Coolla.5. Le be a bjece kew PBW eenon and F M ( ) be a ecangula ma oe. he algohm below deemne f F gh neble and n he poe cae compue a gh nee of F: lgohm fo he gh nee of a ma INPU: ecangula ma F M ( ). OUPU: ma L M ( ) afng FL I f e and n ohe cae. INIILIZION: IF < RURN IF le G : { g g } be a gh Göbne ba fo he gh ubmodule geneaed b column of F and le { } e j j be he canoncal ba of. Ue gh eon of don algohm o ef f e G fo each. IF hee e ome e j uch ha e j G. RURN IF G le H M ( ) wh he pope G FH and conde K : [ k j ] M whee he k j ae uch ha e j g k j g k j gkj fo. hu I GK. RURN L : HK. ample.6. Conde he ng σ( Q) wh and le F be he ma gen b F. pplng he gh eon of Buchbege algohm we hae ha a Göbne ba fo he gh module geneaed b he column of F G { e e }. Fom Coolla.5 we can how ha F ha a gh nee; moeoe one gh nee fo F gen b

CLUDI GLLGO L.. Compung he Pojece Dmenon Gen M an S-module and f f f f f f P P P P M (.) a pojece eoluon of M no dffcul o how ha f he malle nege uch Im ( f ) pojece hen doe no depend on he eoluon and pd(m) (c.f. [5] heoem..). heefoe we can conde a fee eoluon { f } whch we can calculae ung he ome of he applcaon of Göbne bae heo. Hence b heoem. we oban he followng algohm whch compue he pojece dmenon m of a module M gen b a fne e of geneao whee a bjece kew PBW eenon of a LGS ng R (lef Göbne oluble ee [5] and [9]) wh fne lef global dmenon. Noe ha lef Noehean (heoem.) and lgld ( ) < (ee []). Pojece dmenon of a module oe a bjece kew PBW eenon lgohm INPU: lgld( ) < M f f wh f k. OUPU: pd(m). INIILIZION: Compue a fee eoluon { f } of M :. WHIL lgld( ) DO: IF Im ( f ) pojece HN pd(m). LS. m k

MRIX COMPUIONS ON PROJCIV Obee ha n he peou algohm we no need o compue fne fee eoluon of M; an fee eoluon compued ung zge enough. Ne we peen anohe algohm fo compung he lef pojece m dmenon of a module M gen b a fne fee eoluon: f fm fm fm f f m m m M. (.) h algohm uppoed b Coolla.. Pojece dmenon of a module oe a bjece kew PBW eenon lgohm INPU: n -module M defned b a fne fee eoluon (.). OUPU: pd(m). INIILIZION: Se canoncal bae. j : m and H j : Fm wh F m he ma of f m n he WHIL j m DO: Sep. Check whehe o no H j adm a gh nee G j : (a) If no gh nee of (b) If hee e a gh nee Sep. j : j. () If j hen pd(m). () If j hen compue (.5). H e hen pd(m) j. j G of j () If j hen compue (.). H and j ample.. Le be he ng σ ( Q) whee. We wll calculae he pojece dmenon of he lef module M ( ) ( ) ( ) ( ). Fo h we ue he degle ode on Mon() wh

CLUDI GLLGO and he OP ode oe Mon( ) wh e > e. Ung Göbne bae poble o how ha a fee eoluon fo M gen b: F F F M whee F F F. In ode o appl he aboe algohm we a checkng whehe F [ ] ha a gh nee. aghfowad calculaon how ha a gh nee fo (.5): F G [ ] o we compue H 5 H M (.) whee H : and H :. o ef f H ha a gh nee we mu calculae a Göbne ba fo he gh module geneaed b he column of H. Snce he ng condeed a bjece kew PBW eenon we can ue he gh eon of Buchbege algohm. Fo h we conde he degle ode on Mon() wh and he OP ode oe Mon( ) wh e < e < e. pplng h algohm we oban he followng Göbne ba fo

MRIX COMPUIONS ON PROJCIV H G {( ) ( ) ( ) ( ) ( )}. Noe ha e no educble b G hu G and hence H doe no hae a gh nee. heefoe pd(m). Remak.. he aboe algohm can be ued fo eng f a gen module M pojece: We can compue pojece dmenon and hence M pojece f and onl f pd(m). 5. e fo Sabl-Feene heoem. ge a pocedue fo eng abl-feene fo a m module M gen b an eac equence f f M whee a bjece kew PBW eenon. e fo abl-feene lgohm INPU: M an -module wh eac equence f f M. OUPU: RU f M abl fee FLS ohewe. INIILIZION: Compue he ma F of f. IF F ha gh nee HN RURN RU LS RURN FLS ample 5.. Le σ( Q) wh. We wan o know f he lef -module M gen b M e e e e e e e e e e abl fee o no. o anwe h queon we a compung a fne peenaon of M. Condeng he degle ode on Mon() wh

CLUDI GLLGO he OP ode on Mon( ) wh e > e > e > e and ung he mehod eablhed n he peou econ we hae ha a em of geneao fo Sz(M) gen b S {( ) ( ) ( )}. heefoe we ge a followng fne peenaon fo M: F 6 F M (5.) whee F : and F :. pplng he mehod fo compung he zg module we hae ha Sz ( F ) o he peenaon obaned n (5.) become Fnall we mu o e f F 6 F M. F ha a gh nee. Fo h we calculae a Göbne ba fo he gh module geneaed b he column of F. Ung he OP ode on Mon( ) wh e > e > e a Göbne ba fo F gen b G { f } whee f he -h column of 7 F fo 6 and f 7 e e. Noe ha fo eample e G 6 o ha G. hu F ha no gh nee and hence M no abl fee.

MRIX COMPUIONS ON PROJCIV 5 Remak 5.. Fom heoem. f M a lef -module wh eac f f equence M S Im( f ) and M f : S S hen M ( M ) whee he homomophm of gh fee S-module nduced b he ma F. hu fo eng f M abl fee we can ue he eul of Subecon 5.6 n [5] and compung a Göbne ba fo he gh module geneaed b column of F. Ung he gh eon of he don algohm poble o check whehe S Im( F ). If h la equal hold hen M and M abl fee. Coolla. ge anohe pocedue fo eng abl-feene fo a m module M gen b a fne fee eoluon (.) wh S : Indeed f m and f m ha no lef nee hen M non abl fee; f f m ha a lef nee we compue hen he new fne fee eoluon (.) and we check f h m ha a lef nee. We can epea h pocedue unl (.5); f h ha no lef nee hen M no abl fee. If h ha a lef nee hen M abl fee. ample 5.. Le be he ng σ ( Q) whee and conde he lef module M ( ) ( ) ( ) ( ) gen n he ample.. we aw hee a fne peenaon fo M gen b: H 5 H M (5.) whee H : and H :.

6 CLUDI GLLGO In uch eample we howed ha M no a abl fee module. H ha no a gh nee hence 6. Compung Mnmal Peenaon m If M a abl fee module gen b he fne fee eoluon (.) wh S hen he Coolla. ge a pocedue fo compung a mnmal peenaon of M. In fac f m hen f m ha a lef nee (f no pd(m) m bu h mpoble nce M pojece). Hence we compue he new fne peenaon (.) and we wll epea he pocedue unl we ge a fne peenaon a n (.5) whch a mnmal peenaon of M. ample 6.. Le u conde agan he ng σ( Q) wh. Le M be he lef -module gen b peenaon Im( F ) whee F. Regadng he degle ode on Mon() wh and he OP ode oe Mon( ) wh e > e we hae ha Sz ( F ) geneaed b ( ). So he followng eac equence obaned: F F π M whee : [ ]. F Noe ha F ha a gh nee: G ; fom Coolla. we ge he followng fne peenaon fo M: hu h h M (6.)

MRIX COMPUIONS ON PROJCIV 7 wh H [ F G ] and [ f ]. ha h In ample.6 we howed H ha a gh nee; moeoe one gh nee fo H L. In conequence (6.) a mnmal peenaon fo M and M un ou o be a abl fee module. 7. Compung Fee Bae In [7] and [5] peened a ma conuce poof of a eul due Saffod abou abl fee module. heoem 7.. Le S be a ng. hen an abl fee S-module M wh ank( M ) ( S) fee wh dmenon equal o ank(m). Poof. See heoem n [7]. In he poof of uch affmaon he followng fac necea: Popoon 7.. Le S be a ng and : [ ] be an unmodula able column eco oe S hen hee e U ( S) uch ha U. e Poof. B compleene we nclude he poof of h fac (ee Popoon 8 n [5]). hee e elemen a a S uch ha : c ( ) Um ( S) wh : a. (7.)

CLUDI GLLGO 8 Conde he ma ( ); : S a a a (7.) hen ( ). Snce ha ( ) ( ) : S Um c hee e S b b uch ha b and hence ( ). b Le ( ) : b and ); ( : S (7.) hen ( ). Moeoe le ( ); : S (7.)

MRIX COMPUIONS ON PROJCIV 9 hen ( ). Fnall le : ( S); (7.5) hen e and U : ( S). Fo an effece calculaon of a ba of M we a eablhng an algohm fo o calculae he elemena ma U n he Popoon 7.: lgohm fo compung U n Popoon 7. INPU: n unmodula able column eco [ ] oe S. OUPU: n elemena ma U M ( S) uch ha U. DO:. Compue a a S uch ha (7.) hold.. Compue he ma gen n (7.).. Calculae he elemen b b S wh he pope ha b wh a fo.. Defne : ( ) b fo and compue he mace and gen n (7.)-(7.5). RURN: U :. We wll lluae below h algohm. ample 7.. Fo h eample we conde he quanum Wel algeba ( ). Recall h k -algeba geneaed b he aable J a b wh he elaon (dependng upon paamee a b k ): e

CLUDI GLLGO a b a a ab b b. When a b we hae ha ( J ) ( k) fo an feld k (ee [] fo moe popee). I no dffcul o how ha ( ) σ(k J a b [ ]). ake k Q a and b. hu he elaon n h ng ae gen b:. ( ( J )) wll denoe he goup geneaed b all elemena mace of ze oe ( J ). hen [ ] Le [ ] u uch ha u wheeb Umc ( ( J )). Moeoe he column eco [ ] ha a lef nee u [ ] o a able unmodula column. In h cae a a a and he ma gen b

MRIX COMPUIONS ON PROJCIV. Wh h elemena ma we ge [ ]. If we defne ( )( ) ( ) : : and we oban [ ]. Fnall f we defne ( ( )) J ( ( )) J and ( ( )) : J U hen we hae. e U

CLUDI GLLGO he poof of heoem 7. allow u o eablh an algohm o compue a ba fo M when M a abl fee module gen b a mnmal peenaon S f S f M (7.6) wh g : S S uch ha g f and ank( M ) ( S). S lgohm fo compung bae INPU: F m( ) uch ha F M f afe ( S). ha a gh nee G M and OUPU: ma U M ( S) uch ha UG [ I ] ; b Lemma. he e {( ) ( ) ( ) ( U U ) } a ba fo M whee ( U ) ( j) denoe he j-h column of U fo j. INIILIZION: V I. WHIL < DO:. Denoe b S he column eco gen b akng he la ene of he -h column of VG.. ppl he peou algohm o compue L ( S) uch ha L e. I. Defne he ma U : ( S) L fo > and U : L... RURN U : PUV whee P an adequae elemena ma. ample 7.. Le be he quanum Wel algeba ( ) J a b condeed n ample 7. wh k Q a and b. In ode o 6 lluae he peou algohm ake M Im( F ) whee

MRIX COMPUIONS ON PROJCIV. F Ung he algohm decbed n Coolla.5 he degle ode oe Mon() wh > and he OPRV ode on ( ) Mon 6 wh e e > poble o how ha F ha a gh nee gen b:. G Hence we hae he followng mnmal peenaon fo M: 6 π M F (7.7) whee π he canoncal pojecon. hu M a abl fee -module wh ank(m). Snce lkdm() (ee [] heoem.) hen ( ) and b he heoem 7. M fee wh dmenon equal o ank(m). We wll ue he peou algohm fo compung a ba of M.

CLUDI GLLGO Sep. Le 6 I V and he f column of VG.e. [ ] hen ( ) Um c 6 and [ ] u uch ha. u Noe ha [ ] all unmodula. pplng o he f algohm of he cuen econ we hae ha I 6 ( ) ( ) ( ) and

MRIX COMPUIONS ON PROJCIV 5. We can check ha : U ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6 and. G U

CLUDI GLLGO 6 Sep. Make : U V and le be he column eco gen b akng he la fe ene of he nd column of ; VG.e. [ ]. Noe ha [ ] u afe u hu ( ). 5 Um c Moeoe [ ] unmodula wh [ ] u uch ha u and hence able. Ung he algohm a he begnnng of h econ we hae ha I 5 ( ) ( ) ( ) and.

MRIX COMPUIONS ON PROJCIV 7 Makng he epece calculaon we hae ha ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) : L and. 5 L e Defne ; : L U hen. G U U Fnall f hen : UG P

CLUDI GLLGO 8 whee. : U P U U hu a ba fo M gen b { ( ( )) ( ( )) U U π π ( ( )) ( ( ))} 6 5 U U π π wh () U denong he anpoe of -h ow of he ma U fo 5 6.e. ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) U ( ) ( )( ) 5 6 5 5 U ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ). 6 5 U U

MRIX COMPUIONS ON PROJCIV 9 Refeence [] F. Chzak. Quada and D. Robez ffece algohm fo paamezng lnea conol em oe oe algeba ppl. lgeba ngg. Comm. Compu. 6(5) (5) 9-76. []. Cluzeau and. Quada Facong and decompong a cla of lnea funconal em Ln. lg. and ppl. 8() (8) -8. [] P. Cohn Fee Ideal Rng and Localzaon n Geneal Rng Cambdge Une Pe 6. [] H. Fuja Global and Kull dmenon of quanum Wel algeba Jounal of lgeba 6() (999) 5-6. [5] C. Gallego Ma Mehod fo Pojece Module Oe σ -PBW enon Ph.D. he Unedad Naconal de Colomba Bogoá 5. [6] C. Gallego and O. Lezama Göbne bae fo deal of kew PBW eenon Comm. n lgeba 9() () 5-75. [7] C. Gallego and O. Lezama Ma appoach o noncommuae abl fee module and Heme ng lgeba and Dcee Mahemac 8() () -9. [8] C. Gallego and O. Lezama d-heme ng and kew PBW eenon São Paulo Jounal of Mahemacal Scence (F onlne: 5 ugu 5) -. [9] C. Gallego and O. Lezama Pojece module and Göbne bae fo kew PBW eenon (o appea n lgebac and Smbolc Compuaon Mehod n Dnamcal Sem n he Spnge ee dance n Dela and Dnamc). [] J. Gago-Vaga Bae fo pojece module n n ( k ) J. Smb. Comp. 6 () 85-85. []. Y. Lam See Poblem on Pojece Module Spnge Monogaph n Mahemac Spnge 6. []. Y. Lam Lecue on Module and Rng Spnge Gaduae e n Mahemac 89 999. [] O. Lezama Ma and Göbne Mehod n Homologcal lgeba oe Commuae Polnomal Rng Lambe cademc Publhng. [] O. Lezama and M. Ree Some homologcal popee of kew PBW eenon Comm. n lgeba () -. [5]. Quada and D. Robez Compuaon of bae of fee module oe he Wel algeba J. Smb. Comp. (7) -. [6] J.. Saffod Module ucue of Wel algeba J. London Mah. Soc. 8 (978) 9-. g