Paths, cycles and flows in graphs

Similar documents
Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

COMP108 Algorithmic Foundations

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

CS 461, Lecture 17. Today s Outline. Example Run

Garnir Polynomial and their Properties

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

12. Traffic engineering

Jonathan Turner Exam 2-10/28/03

Planar Upward Drawings

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

0.1. Exercise 1: the distances between four points in a graph

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Section 3: Antiderivatives of Formulas

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Problem solving by search

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

1 Introduction to Modulo 7 Arithmetic

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

CS 241 Analysis of Algorithms

TOPIC 5: INTEGRATION

Numbering Boundary Nodes

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Constructive Geometric Constraint Solving

CS September 2018

The Cost Optimal Solution of the Multi-Constrained Multicast Routing Problem

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

(a) v 1. v a. v i. v s. (b)

14 Shortest Paths (November 8)

Minimum Spanning Trees

QUESTIONS BEGIN HERE!

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

Aquauno Video 6 Plus Page 1

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Present state Next state Q + M N

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Designing A Concrete Arch Bridge

Seven-Segment Display Driver

Trees as operads. Lecture A formalism of trees

Solutions to Homework 5

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Computational Biology, Phylogenetic Trees. Consensus methods

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Weighted Matching and Linear Programming

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Chapter 9. Graphs. 9.1 Graphs

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

EE1000 Project 4 Digital Volt Meter

Walk Like a Mathematician Learning Task:

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

WORKSHOP 6 BRIDGE TRUSS

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

This chapter covers special properties of planar graphs.

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

The Z transform techniques

arxiv: v1 [cs.ds] 20 Feb 2008

QUESTIONS BEGIN HERE!

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

CS 103 BFS Alorithm. Mark Redekopp

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Clustering for Processing Rate Optimization

CS553 Lecture Register Allocation I 3

CSI35 Chapter 11 Review

Outline. Binary Tree

Transcription:

Chptr 6 Pth, yl n flow in grph Suppo you wnt to fin hortt pth from givn trting point to givn tintion. Thi i ommon nrio in rivr itn ytm (GPS) n n mol on of th mot i omintoril optimiztion prolm, th hortt pth prolm. In thi hptr, w introu irt grph, hortt pth n flow in ntwork. W fou in prtiulr on th mximum-flow prolm, whih i linr progrm tht w olv with irt mtho, vru th implx mtho, n nlyz th running tim of th irt mtho. 6.1 Growth of funtion In th nlyi of lgorithm, it i mor pproprit to invtigt th ymptoti running tim of n lgorithm pning on th input n not th pri running tim itlf. W rviw th O,Ω n Θ-nottion. Dfinition 6.1 (O, Ω, Θ-nottion). Lt T, f : N N two funtion T (n) i in O(f (n)), if thr xit poitiv ontnt n o N n R >0 with T (n) f(n) for ll n n 0. T (n) i in Ω(f (n)), if thr xit ontnt n o N n R >0 with T (n) f(n) for ll n n 0. T (n) i in Θ(f (n)) if T (n) i oth in O(f (n)) n in Ω(f (n)). Exmpl 6.1. Th funtion T (n)=n + n+ 1 i in O(n ), in for ll x 1 on h n + n+ 1 6n. Hr n 0 = 1 n = 6. Similrly T (n) = Ω(n ), in for h n 1 on h n + n+ 1 n. Thu T (n) i in Θ(n ). 55

56 6. Grph Dfinition 6.. A irt grph i tupl G = (V, A), whr V i finit t, ll th vrti of G n A (V V ) i th t of r of G. W not n r y it two fining no (u, v) A. Th no u n v r ll til n h of th r (u, v) rptivly. u v z x y Fig. 6.1: Exmpl of irt grph with 5 no n 7 r. Dfinition 6. (Wlk, pth, itn). A wlk i qun of th form P = (v 0, 1, v 1,..., v m 1, m, v m ), whr i = (v i 1, v i ) A for i = 1,...,m. If th no v 0,..., v m r ll iffrnt, thn P i pth. Th lngth of P i m. Th itn of two no u n v i th lngth of hortt pth from u to v. It i not y (u, v). Exmpl 6.. Th following i wlk n pth of th grph in Figur 6.1. u,(u, z), z,(z, x), x,(x,u),u,(u, z), z,(z, y), y u,(u, z), z,(z, y), y 6. Rprnting grph n omputing th itn of two no W rprnt grph with n vrti n rry A[v 1,..., v n ], whr th ntry A[v i ] i pointr to link lit of vrti, th nighor of v i. N (v i ) = {u V : (v i,u) A}. W nxt ri vry i lgorithm, whih omput th itn from V to ll othr no. W lt V i V th t of vrti whih hv itn i from. Lmm 6.1. For i = 0,...,n 1, th t V i+1 i qul to th t of vrti v V \(V 0 V i ) uh tht thr xit n r (u, v) A with u V i.

57 u v x y z z u u x x y y Fig. 6.: Ajny lit rprnttion of th grph in Figur 6.1. Proof. Suppo tht v V 0 V i n thr xit n r uv A with u V i. Sin u V i, thr xit pth, 1, v 1,, v,..., i,u of lngth i from to u. Th qun, 1, v 1,, v,..., i,u,uv, v i pth of lngth i+1 from to v n thu v V i+1. If, on th othr hn, v V i+1, thn thr xit pth, 1, v 1,..., i, v i, i+1, v of lngth i+ 1 from to v. W n to how tht v i V i hol. Clrly, in thr xit pth of lngth i from to v i, on h v i V j with j i. If j < i, thn thr xit pth, 1, v 1,..., j, v i of lngth j whih n xtn to pth of lngth j + 1<i+ 1 from to v, 1, v 1,..., j, v i, i+1, v whih ontrit v V i+1. W now ri th rth-firt rh lgorithm, tht omput th itn from trting vrtx to ll othr vrti v V. Th lgorithm mintin rry D[v 1 =, v,..., v n ] π[v 1 =, v,..., v n ] n quu Q whih ontin only in th ginning. Th rry D ontin t trmintion of th lgorithm th itn from to ll othr no n i initiliz with [0,,..., ]. Th rry π ontin pror informtion for hortt pth, in othr wor, whn th lgorithm trmint, π[v]=u, whr uv i n r n D[u]+1= D[v]. Th rry π i initiliz with [0,...,0]. Aftr thi initiliztion, th lgorithm pro follow. whil Q u := h(q) for h v N (u) if (D[v]= ) π[v] := u

58 D[v] := D[u]+1 nquu(q, v) quu(q) Hr th funtion h(q) rturn th nxt lmnt in th quu n quu(q) rmov th firt lmnt of Q, whil nquu(q, v) v to th quu lt lmnt. Lmm 6.. Th rth-firt rh lgorithm ign itn ll D orrtly. Proof. Lt v V. W how y inution on (, v) tht th ll r orrtly ign. If (, v) = 0, thn = v n D[v] = 0. If (, v) = 1, thn v i nighor of n D[v]=1 i t orrtly in th firt itrtion of th whil loop. Lt (, v)> 1. Thn thr xit u, v with (,u)=(, v) 1 n uv A. By inution, th ll D[u] = (, u) i t orrtly y th rth-firt-rh lgorithm. Alo, in th rth-firt-rh lgorithm omput for v pth of lngth D[v] from to v, th no v riv ll whih i grtr thn or qul to (, v). If w onir th qun (ovr tim) of ign ll, tht rthfirt-rh i igning, thn it i y to tht thi qun i monotonouly inring, xri 6. Th no v i thu xplor t th ltt, whn u i quu. Thi how tht th ll of v, D[v] i ign orrtly. Dfinition 6.4 (Tr). A irt tr i irt grph T = (V, A) with A = V 1 n thr xit no r T uh tht thr xit pth from r to ll othr no of T. Lmm 6.. Conir th rry D n π ftr th trmintion of th rth-firtrh lgorithm. Th grph T = (V, A ) with V = {v V : D[v] < } n A = {π(v)v : 1 D[v]< } i tr. Dfinition 6.5. Th tr T from ov i th hortt-pth-tr of th (unwight) irt grph G = (V, A). Thorm 6.1. Th rth-firt-rh lgorithm run in tim O( V + A ). Proof. Eh vrtx i quu n quu t mot on. Th quuing oprtion tk ontnt tim h. Thu quuing n quuing ot O( V ) in totl. Whn vrtx u i quu, it nighor r inpt n th oprtion in th if ttmnt ot ontnt tim h. Thu on h n itionl ot of O( A ), in th ontnt-tim oprtion r rri out for h r A. 6.4 Shortt Pth Dfinition 6.6 (Cyl). A wlk in whih trting no n n-no gr i ll yl.

59 () Th rth-firt rh lgorithm trt with th quu Q = []. Th itn ll for [,,,,,] r [0,,,,, ] rptivly. () Aftr th firt itrtion of th whil loop th quu i Q = [,] n th itn ll r [0,1,,1,, ] rptivly. () Aftr th on itrtion of th whil loop th quu i Q = [,] n th itn ll r [0,1,,1,, ] rptivly. () Aftr th thir itrtion of th whil loop th quu i Q = [] n th itn ll r unhng, in o not hv ny nighor. () Aftr th fourth itrtion of th whil loop th quu i Q = [,] n th itn ll r [0,1,,1,,] rptivly. (f) Aftr th ixth itrtion of th whil loop th quu i mpty Q = [] n th itn ll rmin unhng. Th lu g not th hortt pth tr. Fig. 6.: An xmpl-run of rth-firt rh Suppo w r givn irt grph D = (V, A) n lngth funtion : A R. Th lngth of wlk W i fin (W )= (). A W W now tuy how to trmin hortt pth in th wight grph D ffiintly, in of th n of yl of ngtiv lngth.

60 Thorm 6.. Suppo tht h yl in D h non-ngtiv lngth n uppo thr xit n t-wlk in D. Thn thr xit pth onnting with t whih h minimum lngth mong ll wlk onnting n t. Proof. If thr xit n t-wlk, thn thr xit n t-pth. Sin th numr of r in pth i t mot A, thr mut xit hortt pth P onnting n t. W lim tht (P) (W ) for ll t-wlk W. Suppo tht thr xit n t-wlk W with (W ) < (P). Thn lt W uh wlk with minimum numr of r. Clrly W ontin yl C. If th yl h nonngtiv lngth, thn it n rmov from W to otin wlk who lngth i t mot (W ) n who numr of r i tritly l thn C. W u th nottion W, C, P to not th numr of r in wlk W yl C or pth P. A onluion w n not hr: If thr o not xit ngtiv yl in D, n n t r onnt, thn thr xit hortt wlk trvring t mot V 1 r. Th Bllmn-For lgorithm Lt n= V. W lult funtion f 0, f 1,..., f n : V R { } uivly y th following rul. i) f 0 ()=0, f 0 (v)= for ll v ii) For k < n if f k h n foun, omput for ll v V. f k+1 (v)=min{f k (v), min (u,v) A {f k (u)+(u, v)}} Thorm 6.. For h k = 0,...,n n for h v V f k (v)=min{(p): P i n v-wlk trvring t mot k r}. Corollry 6.1. If D = (V, A) o not ontin ngtiv yl w.r.t., thn f n (v) i qul to th lngth of hortt v-pth. Th numr f n (v) n omput in tim O( V A ). Corollry 6.. In tim O( V A ) on n tt whthr D = (V, A) h ngtiv yl w.r.t. n vntully rturn on.

61 4 1 4 1 () Th lgorithm i initiliz with itn ll for,,,,, ing [0,,,,, ] rptivly () Aftr th firt itrtion th ll r [0,,,4,, ] 4 1 1 4 () Aftr th on itrtion th ll r [0,,4,4,, ] () Aftr th thir itrtion th ll r [0,,4,,7,6] 4 1 4 1 () Aftr th fourth itrtion th ll r [0,,4,,7,4] (f) Aftr th fifth itrtion th ll r unhng. Th hortt pth itn hv n omput. Fig. 6.4: An xmpl-run of th Bllmn-For lgorithm. Th lu g rprnt th tr who pth hv th orrponing lngth. 6.5 Mximum t -flow W now turn our ttntion to linr progrmming prolm whih w will olv y irt mtho, motivt y th ntur of th prolm. W oftn u th following nottion. If f : A B not funtion n if U A, thn f (U ) i fin f (U )= U f (). Dfinition 6.7 (Ntwork, t-flow). A ntwork with piti onit of irt impl grph D = (V, A) n pity funtion u : A R 0. A funtion f : A R 0 i ll n t-flow, if δ out (v) f ()= δ i n (v) f (), for ll v V {, t}, (6.1)

6 whr, t V. Th flow i fil, if f () u() for ll A. Th vlu of f i fin v lu(f )= δ out () f () δ i n () f (). Th mximum t-flow prolm i th prolm of trmining mximum fil t-flow. Hr, for U V, δ in (U ) not th r whih r ntring U n δ out (U ) not th r whih r lving U. Ar t of th form δ out (U ) r ll ut of D. Th pity of ut u(δ out (U )) i th um of th piti of it r. Thu th mximum flow prolm i linr progrm of th form mx δ out () δ out (v) x() δ i n () x() = δ i n (v) x() (6.) x(), for ll v V {, t} (6.) x() u(), for ll A (6.4) x() 0, for ll A (6.5) Dfinition 6.8 (x funtion). For ny f : A R, th x funtion i th funtion x f : V R fin y x f (U )= δ i n (U ) f () δ out (U ) f (). Thorm 6.4. Lt D = (V, A) igrph, lt f : A R n lt U V, thn x f (U )= x f (v). (6.6) v U Proof. An r whih h oth npoint in U i ount twi with iffrnt priti on th right, n thu nl out. An r whih h it til in U i utrt on on th right n on on th lft. An r whih h it h in U i on on th right n on on th lft. A ut δ out (U ) with U n t U i ll n t-ut. Thorm 6.5 (Wk ulity). Lt f fil t-flow n lt δ out (U ) n t-ut, thn v lu(f ) u(δ out (U )). Proof. v lu(f )= x f ()= x f (U )= f (δ out (U )) f (δ in (U )) f (δ out (U )) u(δ out (U )). For n r = (u, v) A th r 1 not th r (v,u). Dfinition 6.9 (Riul grph). Lt f : A R, n u : A R whr 0 f u. Conir th t of r A f = { A, f ()<u()} { 1 A, f ()>0}. (6.7) Th igrph D(f )=(V, A f ) i ll th riul grph of f (for piti u). Corollry 6.. Lt f fil t-flow n uppo tht D(f ) h no pth from to t, thn f h mximum vlu.

Proof. Lt U th t of no whih r rhl in D(f ) from. Clrly δ out (U ) i n t-ut. Now v lu(f )= f (δ out (U )) f (δ in (U ). Eh r lving U i not n r of D(f ) n thu f (δ out (U ))=u(δ out (U )). Eh r ntring U o not rry ny flow n thu f (δ in (U )=0. It follow tht v lu(f ) = u(δ out (U )) n f i optiml y Thorm 6.5. Dfinition 6.10 (unirt wlk). An unirt wlk i qun of th form P = (v 0, 1, v 1,..., v m 1, m, v m ), whr i A for i = 1,...,m n i = (v i 1, v i ) or i = (v i, v i 1 ). If th no v 0,..., v m r ll iffrnt, thn P i n unirt pth. Any irt pth P in D(f ) yil n unirt pth in D. Dfin for uh pth P th vtor χ P {0,±1} A 1 if P trvr, χ P ()= 1 if P trvr 1, 0 if P trvr nithr or 1. 6 (6.8) Thorm 6.6 (mx-flow min-ut thorm, trong ulity). Th mximum vlu of fil t-flow i qul to th minimum pity of n t ut. Proof. Lt f mximum t-flow. Conir th riul grph D(f ). If thi riul grph ontin n t-pth P, thn w n rout flow long thi pth. Mor prily, thr xit n ǫ>0 uh tht f +ǫχ P i fil. W hv v lu(f + ǫχ P )= v lu(f )+ǫ. Thi ontri th mximlity of f thu thr xit no tpth in D(f ). Lt U th no rhl from in D(f ). Thn v lu(f )=u(δ out (U )) n δ out (U ) i n t-ut of minimum pity y th wk ulity thorm. Thi uggt th lgorithm of For n Fulkron to fin mximum flow. Strt with f = 0. Nxt itrtivly pply th following flow ugmnttion lgorithm. Lt P irt t-pth in D(f ). St f f + ǫχ P, whr ǫ i lrg poil to mintin 0 f u. Exri 6.1. Dfin riul pity for D( f ). Thn trmin th mximum ǫ uh tht 0 f u. Thorm 6.7. If ll piti r rtionl, thi lgorithm trmint.

64 u M M 1 t M M v Th xmpl ov how tht, if th ugmnting pth r hon in ivntgou wy, thn th For-Fulkron lgorithm my tk Ω(M) itrtion, whr M i th lrgt pity in th ntwork. Thi hppn if ll ugmnting pth u th r uv or vu rptivly in th riul ntwork. Corollry 6.4 (intgrity thorm). If u() N for h A, thn thr xit n intgr mximum flow (f () N for ll A). Proof. Thi follow from th ft tht th riul piti rmin intgrl n thu th ugmnt flow i lwy intgrl. Thorm 6.8. If w hoo in h itrtion hortt t-pth in D(f ) flowugmnting pth, th numr of itrtion i t mot V A. Dfinition 6.11. Lt D = (V, A) igrph,, t V n lt µ(d) not th lngth of hortt pth from to t. Lt α(d) not th t of r ontin in t lt on hortt t pth. Thorm 6.9. Lt D = (V, A) igrph n, t V. Dfin D = (V, A α(d) 1 ). Thn µ(d)=µ(d ) n α(d)=α(d ). Proof. It uffi to how tht µ(d) n α(d) r invrint if w 1 to D for on r α(d). Suppo not, thn thr i irt t-pth P 1 trvring 1 of lngth t mot µ(d). A α(d) thr i pth P trvring of lngth µ(d). If w follow P until th til of i rh n from thron follow P 1, w otin nothr t pth P in D. Similrly if w follow P 1 until th h of i rh n thn follow P, w otin fourth t pth P 4 in D. Howvr P or P 4 h lngth l thn µ(d). Thi i ontrition. Proof (of Thorm 6.8). Lt u ugmnt flow f long hortt t-pth P in D(f ) otining flow f. Th riul grph D f i ugrph of D = (V, A f α(d(f )) 1 ). Hn µ(d f ) µ(d )=µ(d(f )). If µ(d f )=µ(d(f )), thn α(d f ) α(d )=α(d(f )). At lt on r of P o not long to D f, (th r of minimum riul pity!) thu th inluion i trit. Sin µ(d( f )) inr t mot V tim n, long µ(d(f )) o not hng, α(d(f )) r t mot A tim, w hv th thorm.

65 In th following lt m= A n n= V. Corollry 6.5. A mximum flow n foun in tim O(n m ). 6.6 Minimum ot ntwork flow, MCNFP In ontrt to th mximum t-flow prolm, th gol hr i to rout flow, whih om from vrl our n ink through ntwork with piti n ot in uh wy, tht th totl ot i minimiz. Exmpl 6.. Suppo you r givn irt grph with r wight D = (V, A), : A R 0 n your tk i to omput hortt pth from prtiulr no to ll othr no in th grph n um tht uh pth xit. Thn on n mol thi MCNFP y ning flow of vlu V 1 into th our no n y ltting flow of vlu 1 lv h no. Th ot on th r r fin y. Th r hv infinit piti. W will ltr, tht thi minimum ot ntwork flow prolm h n intgrl olution whih orrpon to th hortt pth from to ll othr no. 1/ /4 1/ / / 7/ 1 0 1 0 1 Fig. 6.5: A Ntwork with in/out-flow, ot n piti n fil flow of ot 1.

66 Hr i forml finition of minimum ot ntwork flow prolm. In thi nottion, vrti r inx with th lttr i, j,k n r r not y thir til n h rptivly, for xmpl (i, j ) not th r from i to j. A ntwork i now irt grph D = (V, A) togthr with pity funtion u : A Q 0, ot funtion : A Q n n xtrnl flow : V Q. Th vlu of (i ) not th mount of flow whih om from th xtrior. If (i )>0, thn thr i flow from th outi, ntring th ntwork through no i. If (i )<0, thr i flow whih lv th ntwork through i. In th following w oftn u th nottion f (i, j ) for th flow-vlu on th r (i, j ) (int of f ((i, j ))). Similrly w writ (i, j ) n u(i, j ). A fil flow i funtion f : A Q 0 whih tifi th following ontrint. δ out (i) f () j δ i n (i) f ()= i for ll i V, 0 f () u() for ll A. Th gol i to fin fil flow with minimum ot: minimiz A ()f () ujt to δ out (i) f () δ i n (i) f ()= (i ) for ll i V, 0 f () u() for ll () A Exmpl 6.4. Imgin you r pilot n fly pngr irpln in hop from irport 1 to irport to irport n o on, until irport n. At irport i thr r i j pngr tht wnt to trvl to irport j, whr j > i. You my i how mny of th i j pngr you will tk on or. Eh of th pngr will py i j ollr for th trip. Th irpln n ommot p popl. You r gry pilot n think of pln to pik up n livr pngr on your hop from 1 to n whih mximiz your rvnu. Fining thi pln n mol minimum ot ntwork flow prolm. Your ntwork h no 1,...,n n r (i,i + 1),i = 1,...,n 1 with piti p n without ot. Th no o not hv in/out-flow from th outi. You furthrmor hv no i j for i < j n i, j {1,...,n} whih r x no with in-flow i j from th outi. Eh no i j i onnt to i n to j with irt r. Th piti on th r r infinit. Th ot of th r (i j,i ) i i j. Th ot of th r (i j, j ) i zro. Th outflow on th no j i th totl numr of pngr tht wnt to fly to no j. An intgrl optiml flow to thi prolm i n optiml pln for you. Throughout thi hptr w mk th following umption. 1. All t (ot, upply, mn n pity) r intgrl.. Th ntwork ontin n inpitt irt pth twn vry pir of no.. Th uppli/mn t th no tify th onition i V (i ) = 0 n th MCNFP h fil olution. 4. All r ot r nonngtiv. 5. Th grph o not ontin pir of rvr r.

Exri 6.. Show how to trnform MCNFP on igrph with pir of rvr r into MCNFP on igrph with no pir of rvr r. Th numr of r n no houl ymptotilly rmin th m. An r-flow of D i flow vtor, tht tifi th nonngtivity n pity ontrint. δ i n (i) f () δ out (i) f ()= (i ) for ll i V, 0 f () u() for ll A. If (i )>0, thn i i n x no (mor inflow thn outflow). If (i )<0, thn i i fiit no (mor outflow thn inflow). If (i )=0 thn i i ll ln. Exri 6.. Prov tht i V (i )=0 hol n thu tht fil flow only xit if th um of th (i ) i qul to zro. Lt P th olltion of irt pth of D n lt C th olltion of irt yl of D. A pth-flow i funtion β : P C R 0 whih ign flow vlu to pth n yl. For (i, j ) A n P P lt δ (i,j ) (P) 1 if (i, j ) P n 0 othrwi. For C C lt δ (i,j ) (C) 1 if (i, j ) C n 0 othrwi. A pth-flow β trmin uniqu r-flow f (i, j )= P P δ (i,j ) (P)β(P)+ δ (i,j ) (C)β(C). Thorm 6.10. Evry pth n yl flow h uniqu rprnttion nonngtiv r-flow. Convrly, vry nonngtiv r flow f n rprnt pth n yl flow with th following proprti: 1. Evry irt pth with poitiv flow onnt fiit no with n x no.. At mot n+ m pth n yl hv nonzro flow n t mot m yl hv nonzro flow. If th r flow f i intgrl, thn o r th pth n yl flow into whih it ompo. Proof. S iuion ov. Lt f n r flow. Suppo i 0 i fiit no. Thn thr xit n inint r (i 0,i 1 ) whih rri poitiv flow. If i 1 i n x no, w hv foun pth from fiit to x no. Othrwi, th flow ln ontrint t i 1 impli tht thr xit n r (i 1,i ) with poitiv flow. Rpting thi prour, w finlly mut rriv t n x no or rviit no. Thi mn tht w C C 67

68 ithr hv ontrut irt pth P from fiit no to x no or irt yl C, oth involving only r with tritly poitiv flow. In th firt, lt P = i 0,...,i k th irt pth from fiit no i 0 to x no i k. W t β(p) = min{ i0, ik,min{f (i, j ) (i, j ) P}} n f (i, j )= f (i, j ) β(p), (i, j ) P. In th on, t β(c)=min{f (i, j ) (i, j ) C n f (i, j )= f (i, j ) β(c), (i, j ) C. Rpt thi prour until ll no imln r zro. Now fin n r with poitiv flow n ontrut yl C y following only poitiv r from thr. St β(c) = min{f (i, j ) (i, j ) C} n f (i, j )= f (i, j ) β(c), (i, j ) C}. Rpt thi pro until thr r no poitiv flow-r lft. Eh tim pth or yl i intifi, th x/fiit of om no i t to zro or om r i t to zro. Thi impli tht w ompo into t mot n + m pth n yl. Sin yl ttion t n r to zro w hv t mot m yl. An r flow f with (i ) = 0 for h i V i ll irultion. Corollry 6.6. A irultion n ompo into t mot m yl flow. Lt D = (V, A) ntwork with piti u(i, j ), (i, j ) A n ot (i, j ), (i, j ) A n lt f fil flow of th ntwork. Th riul ntwork D(f ) i fin follow. W rpl h r (i, j ) A with two r (i, j ) n (j,i ). Th r (i, j ) h ot (i, j ) n riul pity r (i, j )= u(i, j ) f (i, j ). Th r (j,i ) h ot (i, j ) n riul pity r (j,i )= f (i, j ). Dlt ll r whih o not hv tritly poitiv riul pity. A irt yl in D(f ) i ll n ugmnting yl of f. Lmm 6.4. Suppo tht f n f r fil flow, thn f f i irultion in D(f ). Hr f f i th flow mx{0, f () f ()}, if A(D) (f f )()= mx{0, f () f ()}, if 1 A(D) 0, othrwi. Proof. It i vry y to tht th flow f f tifi th pity ontrint. On lo h for h v V δ out (v)(f () f ()) (f () f ())=0. δ i n (v) If trm (f () f ()) i ngtiv, it i rpl y it olut vlu n hrg flow on th r 1 in D(f ) whih lv it ontriution to th um ov invrint.

69 /4 1/1 1/ 1/ 1/1 / /1 /1 7/ Fig. 6.6: Th riul ntwork of th flow in Figur 6.5 n ngtiv yl mrk y th r g. 4//4 1 /4/4 1/1 1 1/4 1 Fig. 6.7: Two r 1, A ll with f ()/f ()/u() n th orrponing flow on th r (or thir rvr) in D(f ). Ar in D(f ) r ll with flow n pity vlu rptivly. Thorm 6.11 (Augmnting Cyl Thorm). Lt f n f ny two fil flow of ntwork flow prolm. Thn f qul f plu th flow of t mot m irt yl in D(f ). Furthrmor th ot of f qul th ot of f plu th ot of flow on th ugmnting yl. Proof. Thi n n y pplying flow ompoition on th flow f f in D(f ). Thorm 6.1 (Ngtiv Cyl Optimlity Conition). A fil flow f i n optiml olution of th minimum ot ntwork flow prolm, if n only if it tifi th ngtiv yl optimlity onition: Th riul ntwork D(f ) ontin no irt yl of ngtiv ot. Proof. Suppo tht f i fil flow n tht D(f ) ontin ngtiv irt yl. Thn f nnot optiml, in w n ugmnt poitiv flow

70 long th orrponing yl in th ntwork. Thrfor, if f i n optiml flow, thn D(f ) nnot ontin ngtiv irt yl. Suppo now tht f i fil flow n uppo tht D(f ) o not ontin ngtiv yl. Lt f n optiml flow with f f. Th vtor f f i irultion in D(f ) with non-poitiv ot T (f f ) 0. It follow from Thorm 6.11 tht th ot of f qul th ot of f plu th ot of irt yl in th riul ntwork D(f ). Th ot of th yl i nonngtiv, n thrfor (f ) (f ) whih impli tht f i optiml. 0 0 0 1 Fig. 6.8: Th rult of ugmnting flow of on long th ngtiv yl in Figur 6.6. Thi flow h ot 1 ut i not optiml, in th riul ntwork till ontin ngtiv yl. Algorithm 6.1 (Cyl Cnling Algorithm). 1. tlih fil flow f in th ntwork. WHILE D( f ) ontin ngtiv yl. tt ngtiv yl C in D( f ). δ=min{r (i, j ) (i, j ) C}. ugmnt δ unit of flow long th yl C. upt D(f ). RETURN f Thorm 6.1. Th yl nling lgorithm trmint ftr finit numr of tp if th MCNFP h n optiml olution. Proof. Th yl nling lgorithm ru th ot in h itrtion. W hv um tht th input t i intgrl. Thu th ot r y t lt on unit h itrtion. Thrfor th numr of itrtion i finit. Corollry 6.7. If th piti r intgrl n if th MCNFP h optiml flow, thn it h n optiml flow with intgr vlu only.

Lt π : V R funtion (no potntil). Th ru ot of n r (i, j ) w.r.t. π i π ((i, j )) = ((i, j ))+π(i ) π(j ). Th potntil π i ll fil if π ((i, j )) 0 for ll r (i, j ) A. Lmm 6.5. Lt D = (V, A) igrph with r wight : A R. Thn D o not hv ngtiv yl if n only if thr xit fil no potntil π of D with r wight. Proof. Conir irt pth P = i 0,i 1,...,i k. Th ot of thi pth i (P)= k ((i j 1,i j )). j=1 Th ru ot of thi pth i qul to π (P)= k ((i j 1,i j ))+π(i 0 ) π(i k ). j=1 If P i yl, thn i 0 n i k r qul, whih mn tht it ot n ru ot oini. Thu, if thr xit fil no potntil, thn thr o not xit ngtiv yl. On th othr hn, uppo tht D, o not ontin ngtiv yl. A vrtx to D n th r (,i ) for ll i V. Th wight (ot) of ll th nw r i 0. Noti tht in thi wy, no nw yl r rt, thu till thr o not xit ngtiv yl. Thi mn w n omput th hortt pth from to ll othr no i V. Lt π th funtion whih ign th hortt pth lngth. Clrly π ((i, j ))=π(i ) π(j )+((i, j )) 0, in th hortt-pth lngth to j i t mot th hortt-pth lngth to i + ((i, j )). Thi mn tht w hv gin ni wy to prov tht flow i optiml. Simply quip th riul ntwork with fil no potntil. Corollry 6.8 (Ru Cot Optimlity Conition). A fil flow f i optiml if n only if thr xit no potntil π uh tht th ru ot π (i, j ) of h rh (i, j ) of D( f ) r nonngtiv. Th yl nling lgorithm i only puopolynomil. If w oul lwy ho minimum yl (yl with t improvmnt) n ugmnting yl, w woul hv polynomil numr of itrtion. Fining minimum yl i N P-hr. Int w ugmnt long minimum mn yl. On n fin minimum mn yl in polynomil tim. Th mn ot of yl C C i th ot of C ivi y th numr of r in C: ( (i, j ))/ C. (i,j ) C Algorithm 6. (Minimum Mn Cyl Cnling, MMCC). 71

7 1. tlih fil flow f in th ntwork. WHILE D( f ) ontin ngtiv yl. tt minimum mn yl C in D( f ). δ=min{r (i, j ) (i, j ) C}. ugmnt δ unit of flow long th yl C. upt D(f ). RETURN f W now nlyz th MMCC-lgorithm. Lt µ(f ) not th minimum mnwight of yl in D(f ). Lmm 6.6 (S Kort & Vygn [8]). Lt f 1, f,... qun of fil flow uh tht f i+1 rult from f i y ugmnting flow long C i, whr C i i minimum mn yl of D(f i ), thn 1. µ(f k ) µ(f k+1 ) for ll k.. µ(f k ) n n 1 µ(f l ), whr k < l n C k C l ontin pir of rvr r. Proof. 1): Suppo f k n f k+1 r two uqunt flow in thi qun. Conir th multi-grph H whih rult from C k n C k+1 y lting pir of oppoing r. Th r of H r ut of th r of D(f k ), in n r of C k+1 whih i not in D(f k ) mut rvr r of C k. Eh no in H h vn gr. Thu H n ompo into yl, h of mn wight t lt µ(f k ). Thu w hv (A(H)) µ(f k ) A(H). Sin th totl wight of h rvr pir of r i zro w hv (A(H))=(C k )+(C k+1 )=µ(f k ) C k +µ(f k+1 ) C k+1. Sin A(H) C k + C k+1 w onlu µ(f k )( C k + C k+1 ) µ(f k ) A(H) (A(H)) = µ(f k ) C k +µ(f k+1 ) C k+1. Thu µ(f k ) µ(f k+1 ). ): By th firt prt of th thorm, it i nough to prov th ttmnt for k,l uh tht C i C l o not ontin pir of rvr r for h i, k < i < l. Agin, onir th grph H rulting from C k n C l y lting pir of oppoing r. H i ugrph of D(f k ), in ny r of C l whih o not long to D(f k ) mut rvr r of C k,c k+1,...,c l 1. But only C k ontin rvr r of C l. So ov w hv (A(H))=(C k )+(C l )=µ(f k ) C k +µ(f l ) C k+1. Sin A(H) C k + C l w hv A(H) n 1 n ( C k + C l ). Thu w gt

7 µ(f k ) n 1 n ( C k + C l ) µ(f k ) A(H) (A(H)) = µ(f k ) C k +µ(f l ) C l µ(f l )( C k + C l ) Thi impli tht µ(f k ) n n 1 µ(f l ). Corollry 6.9. During th xution of th MMCC-lgorithm, µ( f ) r y ftor of 1/ vry n m itrtion. Proof. Lt C 1,C,... th qun of ugmnting yl. Evry m-th itrtion, thr mut n r of th yl, whih i rvr to on of th uing m 1 yl, u vry itrtion, on r of th riul ntwork will lt. Thu ftr n m itrtion, th olut vlu of µ h ropp y ( ) n 1 n n 1 1/. Corollry 6.10. If ll t r intgrl, thn th MMCC-lgorithm run in polynomil tim. Proof. A lowr oun on µ i th mllt ot min µ rop y 1/ vry m n itrtion. Aftr mn logn min itrtion, olut vlu of minimum mn wight yl rop low 1/n, thu i zro. W n to prov tht minimum mn yl n foun in polynomil tim Thi i o-ll wkly polynomil oun, in th inry noing lngth of th numr in th input (hr th ot) influn th running tim. W now prov tht th MMCC-lgorithm i trongly polynomil. Thorm 6.14 (S Kort & Vygn [8]). Th MMCC-lgorithm rquir O(m n logn) itrtion (mn wight yl nlltion). Proof. On how tht vry m n( log n +1) itrtion, t lt on r i fix, whih mn tht th flow through thi r o not hng nymor. Lt f 1 om flow t om itrtion n lt f th flow m n( logn +1) itrtion ltr. It follow from Corollry 6.9 tht µ(f 1 ) n µ(f ) (6.9) hol. Dfin th ot () = () µ(f ) for th riul ntwork D(f ). Thr xit no ngtiv yl in D(f ) w.r.t. thi ot. ( A yl C h wight (C) = C () C µ(f ) n thu (C)/ C = C ()/ C µ(f ) 0). By Lmm 6.5

74 thr xit fil no potntil π for th wight. On h 0 π () = π () µ(f ) n thu π () µ(f ), for ll A(D(f )). (6.10) Lt C minimum mn yl of D(f 1 ). On h π (C)=(C)=µ(f 1 ) C n µ(f ) C. (6.11) It follow tht thr xit n r 0 of C uh tht hol. Th inquliti (6.10) imply tht 0 A(D(f )) W now mk th following lim: π ( 0 ) n µ(f ) (6.1) Lt f fil flow uh tht 0 D(f ), thn µ(f ) µ(f ). If w hv hown thi lim, thn it follow from Lmm 6.6 tht 0 nnot nymor in th riul ntwork of flow ftr f. Thu th flow long th r 0 (or 0 1 ) i fix. Lt f flow uh tht 0 A(D(f )). Rll tht f f i irultion in D(f ) whr 0 D(f ), 0 1 D(f ) n thi irultion n flow ovr 0 1. Thi irultion n ompo into yl n on of th yl C ontin 0 1. On h π(0 1)= π( 0 ) n µ(f ) (q. (6.1)). Uing (6.10) on otin (C) = C π () (6.1) n µ(f )+(n 1)µ(f ) (6.14) = (n+ 1)µ(f ) (6.15) > n µ(f ). (6.16) Th rvr of C i n ugmnting yl for f with totl wight t mot n µ(f ) n thu with mn wight t mot µ(f ). Thu µ(f ) µ(f ). 6.7 Computing minimum ot-to-profit rtio yl Givn igrph D = (V, A) with ot : A Z n profit p : A N >0, th tk i to omput yl C C with minimum rtio (C) p(c). (6.17) Noti tht thi i th lrgt numr β Q whih tifi

75 β (C), for ll C C. (6.18) p(c) By rwriting thi inqulity, w unrtn thi to th lrgt numr β Q uh tht (C) βp(c) 0 for ll C C. (6.19) In othr wor, w rh th lrgt numr β Q uh tht th igrph D = (V, A) with ot β : A Q, whr β ()=() βp(). W n routin to hk whthr D h ngtiv yl for givn wight funtion. For thi w um w.l.o.g. tht h vrtx i rhil from th vrtx, if nry y intruuing nw vrtx from whih thr i n r with ot n profit 0 to ll othr no. Th minimum ot-to-profit rtion yl w.r.t. thi nw grph i thn th minimum ot to profit rtio yl w.r.t. th originl grph, in i not vrtx of ny yl. Rll th following ingl-our hortt-pth lgorithm of Bllmn-For whih w now pply with wight β : Lt n= V. W lult funtion f 0, f 1,..., f n : V R { } uivly y th following rul. i) f 0 ()=0, f 0 (v)= for ll v ii) For k < n if f k h n foun, omput for ll v V. f k+1 (v)=min{f k (v), min (u,v) A {f k (u)+ β (u, v)} Thr xit ngtiv yl w.r.t. β if n only if f n (v)< f k (v) for om v V n 1 k < n. Thu w n tt in O(m n) tp whthr D, β ontin ngtiv yl. W now pply th following i to rh for th orrt vlu of β. W kp n intrvl I = [L,U ] with th invrint tht th vlu β tht w r rhing li in thi intrvl I. A trting vlu, w n ho L = min n U = mx, whr min n mx r th mllt n lrgt ot rptivly. In on itrtion w omput M = (L+U )/. W thn hk whthr D, togthr with M ontin ngtiv yl. If y, w know tht β i t lt M n w t L M. If not, thn β i t mot M n w upt th uppr oun U M. Whn n w top thi prour? W n top it, if w n ur tht only on vli ot-to-profit rtio yl li in [L,U ]. Suppo tht C 1 n C hv iffrnt ot-to-profit rtio. Thn (C 1 )/p(c 1 ) (C )/p(c ) = (C 1 ) p(c ) (C )p(c 1 ) (p(c 1 ) p(c )) (6.0) 1/(n pmx ). (6.1) Thu w n top our pro, if U L < 1/(n p mx ), in w know thn tht thr n only on yl C with (C)/p(C) [L,U ].

76 Suppo tht [L,U ] i th finl intrvl. W know thn tht L (C)/p(C) for ll C C n U > (C)/p(C) hol for om C C. Lt C minimum wight yl w.r.t. th r ot L. Clrly U > (C)/p(C) L hol n thu C i th minimum ot-to-profit yl w hv n looking for. Lt u nlyz th numr of rquir itrtion. W n to hlv th trting intrvl-lngth, whr i th lrgt olut vlu of ot, until th lngth i t mot 1/(n pmx ). W rh th miniml i N uh tht (1/) i 1/(n pmx ). (6.) Thi how u tht w n O(log( p mx n )) itrtion whih i O(logn log K ), whr K i th lrgt olut vlu of ot or profit. Thorm 6.15 (Lwlr [9]). Lt D igrph with ot : A Z n profit p : A N >0 n lt K N uh tht () + p() K for ll N. A minimum ot-to-profit rtio yl of G n omput in tim O(m n logn log K ). But w knw wkly polynomil lgorithm for MCNFP from th xri. So you urly k: Cn w o ttr for minimum ot-to-profit yl omputtion? Th nwr i Y! 6.7.1 Prmtri rh Lt u firt roughly ri th i on how to otin trongly polynomil lgorithm, [1]. Th Bllmn-For lgorithm tll u whthr our urrnt β i too lrg or too mll, pning on whthr D with wight β ontin ngtiv yl or not. Rll tht th B-F lgorithm omput ll f i (v) for v V n 1 i n. If th ll r omput with ot β, thn thy r piwi linr funtion in β n w not thm y f i (v)[β]. Dnot th optiml β tht w look for y β n uppo tht w know n intrvl I with uh tht β I n h funtion f i (v)[β] i linr if it i rtrit to thi omin I. Thn w n trmin β follow. Lt I = [L,U ] th intrvl n rmmr tht w r rhing for th lrgt vlu of β I uh tht f n (v)[β]= f n 1 (v)[β] hol for h v V. Clrly thi hol for β = L. Thu w only n to hk whthr β = U y omputing th vlu f n (v)[u ] n f n 1 (v)[u ] for h v V n hk whthr on of th pir onit of iffrnt numr. Th i i now to omput uh n intrvl I = [L,U ] in trongly polynomil tim. Conir th funtion f 1 (v)[β]. Clrly on h

77 f 1 (v)[β]= { (, v) β p(, v) if (, v) A, othrwi. Thi how tht f 1 (v)[β] i linr funtion in β for h v V. Now uppo tht i 1 n tht w hv omput n intrvl I = [L,U ] with β I n h funtion f i (v)[β] i linr funtion if β i rtrit to I. Now onir th funtion f i+1 (v)[β] for prtiulr v V. Rll th formul f i+1 (v)[β]=min{f i (v)[β], min (u,v) A {f i (u)[β]+(u, v) β p(u, v)}}. (6.) Eh of th funtion f i (v)[β] n f i (u)[β]+(u, v) β p(u, v) r linr on I. Th funtion f i (v)[β] n rtriv y omputing hortt pth P i (v) from to v with r wight β for om β in (L,U ) whih u t mot i r. If β i thn llow to vry, th lin whih i fin y f i (v)[β] on I i thn th lngth of thi pth P with prmtr β. Similrly w n rtriv th funtion (lin) f i (u)[β]+(u, v) β p(u, v) for h (u, v) A. With th Bllmn-For lgorithm, thi mount to running tim of O(m n). W now hv n lin n n now omput th lowr nvlop of th lin in tim O(n log n) ltrntivly w n lo omput ll intrtion point of th lin n ort thm w.r.t. inring β-oorint. Thi woul mount to O(n log n). Lt β 1,...,β k th ort lit of th β-oorint. Now β tr i l := β k/ n hk whthr β > β tr i l. If y, w n rpl L y β tr i l n w n lt th numr β 1,...,β k/ 1. Othrwi, w rpl U y β tr i l n lt β k/ +1,..., k. In ny, w hlv th numr of poil β-oorint n ontinu in thi wy. Suh hk rquir ngtiv yl tt in th grph D with r wight β tr i l n ot O(m n). In th n w hv two onutiv β-oorint n hv n intrvl [L,U ] on whih f i+1 (v)[β] i linr. To fin n intrvl I uh tht f i+1 (v)[β] i linr on I n β I ot thu O(m n log n) tp. W now ontinu to tightn thi intrvl uh tht ll funtion f i+1 (v)[β], v V r linr on [L,U ]. Thu in tp i+ 1 thi mount to running tim of Th totl running tim i thu O ( n (m n log n) ). O(n m log n). Thorm 6.16. Lt D = (V, A) irt grph n lt : A R n p : A R >0 funtion. On n omput yl C of D minimizing (C)/p(C) in tim O(n m log n).

78 6.7.1.1 Exri 1) Show tht thr r no two iffrnt pth from r to nothr no in irt tr T = (V, A). ) Prov Lmm 6.. ) Why n w um without lo of gnrlity tht minimum ot ntwork h pth from i to j for ll i j V whih i inpitt? 4) Provi n xmpl of MCNFP for whih th impl yl-nling lgorithm from ov n rquir n xponntil numr of nl, if th yl r hon in ivntgou wy. 5) Provi proof of Thorm 6.7. 6) Lt Q =< u 1,...,u k > th quu for n itrtion of th whil loop of th rth-firt-rh lgorithm. Show tht D[u i ] i monotonouly inring n tht D[u 1 ]+1 D[u k ]. Conlu tht th qun of ign ll (ovr tim) i monotonouly inring qun.

89 Rfrn 1. J. Emon. Mximum mthing n polyhron with 0,1-vrti. Journl of Rrh of th Ntionl Buru of Stnr, 69:15 10, 1965.. J. Emon. Pth, tr n flowr. Cnin Journl of Mthmti, 17:449 467, 1965.. F. Einrn, A. Krrnur, n C. Xu. Algorithm for longr ol liftim. In C. Dmtru, itor, 6th Intrntionl Workhop on Exprimntl Algorithm, WEA07, volum 455 of Ltur Not in Computr Sin, pg 8 51. Springr, 007. 4. M. Gröthl, L. Lováz, n A. Shrijvr. Gomtri Algorithm n Comintoril Optimiztion, volum of Algorithm n Comintori. Springr, 1988. 5. L. Khhiyn. A polynomil lgorithm in linr progrmming. Dokly Akmii Nuk SSSR, 44:109 1097, 1979. 6. V. Kl n G. J. Minty. How goo i th implx lgorithm? In Inquliti, III (Pro. Thir Sympo., Univ. Cliforni, Lo Angl, Clif., 1969; it to th mmory of Thoor S. Motzkin), pg 159 175. Ami Pr, Nw York, 197. 7. T. Koh. Rpi Mthmtil Progrmming. PhD thi, Thnih Univrität Brlin, 004. ZIB-Rport 04-58. 8. B. Kort n J. Vygn. Comintoril optimiztion, volum 1 of Algorithm n Comintori. Springr-Vrlg, Brlin, on ition, 00. Thory n lgorithm. 9. E. L. Lwlr. Comintoril optimiztion: ntwork n mtroi. Holt, Rinhrt n Winton, Nw York, 1976. 10. L. Lováz. Grph thory n intgr progrmming. Annl of Dirt Mthmti, 4:141 158, 1979. 11. J. E. Mrn n M. J. Hoffmn. Elmntry Clil Anlyi. Frmn, ition, 199. 1. J. Mtouk n B. Gärtnr. Unrtning n Uing Linr Progrmming (Univritxt). Springr-Vrlg Nw York, In., Suu, NJ, USA, 006. 1. N. Mgio. Comintoril optimiztion with rtionl ojtiv funtion. Mth. Opr. R., 4(4):414 44, 1979. 14. A. S. Nmirovkiy n D. B. Yuin. Informtionl omplxity of mthmtil progrmming. Izvtiy Akmii Nuk SSSR. Tkhnihky Kirntik, (1):88 117, 198. 15. A. Shrijvr. Thory of Linr n Intgr Progrmming. John Wily, 1986. 16. N. Z. Shor. Cut-off mtho with p xtnion in onvx progrmming prolm. Cyrnti n ytm nlyi, 1(1):94 96, 1977.