Concepts in Spin Electronics

Similar documents
The Physics of Nanoelectronics

Lecture 8, April 12, 2017

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

The Physics of Ferromagnetism

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Physics of Semiconductors

Coulomb Blockade and Kondo Effect in Nanostructures

Mesoscopic Spintronics

Spintronics at Nanoscale

The Oxford Solid State Basics

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University

The Physics of Semiconductors

Cotunneling and Kondo effect in quantum dots. Part I/II

Electronic and Optoelectronic Properties of Semiconductor Structures

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Physics of Low-Dimensional Semiconductor Structures

Electrical spin-injection into semiconductors

An Overview of Spintronics in 2D Materials

Electron Correlation

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Solid Surfaces, Interfaces and Thin Films

Quantum Information Processing with Semiconductor Quantum Dots

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Coulomb blockade and single electron tunnelling

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Quantum Dot Spin QuBits

MESOSCOPIC QUANTUM OPTICS

Current mechanisms Exam January 27, 2012

Molecular Electronics

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Magnetism in Condensed Matter

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

CONTENTS. vii. CHAPTER 2 Operators 15

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

SUPPLEMENTARY INFORMATION

3.45 Paper, Tunneling Magnetoresistance

Contents. Acknowledgments

Interference: from quantum mechanics to nanotechnology

Spin-polarized current amplification and spin injection in magnetic bipolar transistors

Effet Kondo dans les nanostructures: Morceaux choisis

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Electrical Transport in Nanoscale Systems

Spin Current and Spin Seebeck Effect

Electron spins in nonmagnetic semiconductors

University of Regensburg & Tohoku University

Quantum Physics in the Nanoworld

LECTURES ON QUANTUM MECHANICS

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Contents. Preface to the first edition

Quantum Physics II (8.05) Fall 2002 Outline

Determination of the tunnel rates through a few-electron quantum dot

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

SUPPLEMENTARY INFORMATION

arxiv: v1 [cond-mat.mes-hall] 28 Jun 2008

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

Spin injection. concept and technology

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Condensed Matter Physics 2016 Lecture 13/12: Charge and heat transport.

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Single-Electron Effects in Nanostructures

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Majorana Fermions in Superconducting Chains

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Theory of spin-polarized bipolar transport in magnetic p-n junctions

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

Manipulation of Majorana fermions via single charge control

Orbital order and Hund's rule frustration in Kondo lattices

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Superconductivity at nanoscale

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Physics Coral Gables, Florida 33124, USA

Chapter 3 Properties of Nanostructures

Quantum Transport and Dissipation

Appendix 1: List of symbols

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

SUPPLEMENTARY INFORMATION

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

EE 3329 Electronic Devices Syllabus ( Extended Play )

Self-assembled SiGe single hole transistors

List of Comprehensive Exams Topics

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

Supplementary material: Nature Nanotechnology NNANO D

Transcription:

Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS

Contents List of Contributors xiii 1 Optical phenomena in magnetic semiconductors 1 H. Munekata 1.1 Introduction 1 1.2 Optical properties of III-V-based MAS 2 1.2.1 Brief history 2 1.2.2 Hole-mediated ferromagnetism 3 1.2.3 Optical properties 6 1.3 Photo-induced ferromagnetism 11 1.3.1 Effect of charge injection I: photo-induced ferromagnetism 11 1.3.2 Effect of charge injection II : optical control of coercive force 14 1.4 Photo-induced magnetization rotation effect of spin injection 17 1.5 Spin dynamics 23 1.6 Possible applications 29 1.6.1 Magnetization reversal by electrical spin injection 30 1.6.2 Circularly polarized light emitters and detector 32 References 36 2 Bipolar spintronics 43 Igor 2utic and Jaroslav Fabian 2.1 Preliminaries 43 2.1.1 Introduction 43 2.1.2 Concept of spin polarization 44 2.1.3 Optical spin orientation 46 2.1.4 Spin injection in metallic F/N junctions 49 2.1.5 Spin relaxation in semiconductors 55 2.2 Bipolar spin-polarized transport and applications 61 2.2.1 Spin-polarized drift-diffusion equations 61 2.2.2 Spin-polarized p-n junctions 65 2.2.3 Magnetic p-n junctions 70

vm CONTENTS 2.2.4 Spin transistors 74 2.2.5 Outlook and future directions 86 References 88 3 Probing and manipulating spin effects in quantum dots 93 S. Tarucha, M. Stopa, S. Sasaki, and K. Ono 3.1 Introduction and some history 93 3.2 Charge and spin in single quantum dots 96 3.2.1 Constant interaction model 96 3.2.2 Spin and exchange effect 99 3.3 Controlling spin states in single quantum dots 101 3.3.1 Singet-triplet and doublet-doublet crossings 101 3.3.2 Non-linear regime for singlet-triplet crossing 104 3.3.3 Zeeman effect 105 3.4 Charge and spin in double quantum dots 109 3.4.1 Hydrogen molecule model 109 3.4.2 Stability diagram of charge states 110 3.4.3 Exchange coupling in the scheme of quantum computing 112 3.5 Spin relaxation in quantum dots 114 3.5.1 Transverse and longitudinal relaxation 114 3.5.2 Effect of spin-orbit interaction 117 3.6 Spin blockade in single-electron tunneling 118 3.6.1 Suppression of single-electron tunneling 118 3.6.2 Pauli effect in coupled dots 119 3.6.3 Lifting of Pauli spin blockade by hyperfine coupling 122 3.7 Cotunneling and the Kondo effect 125 3.7.1 Cotunneling 125 3.7.2 The standard Kondo effect 127 3.7.3 The S-T and D-D Kondo effect 131 3.8 Conclusions 139 References 140 4 Spin-dependent transport in single-electron devices 145 Jan Martinek and J6zef Barnas 4.1 Single-electron transport 146 4.2 Model Hamiltonian 148 4.2.1 Metallic or ferromagnetic island 149 4.2.2 Quantum dot - Anderson model 149 4.3 Transport regimes 150 4.4 Weak coupling - sequential tunneling 151

CONTENTS ix 4.4.1 Quantum dot 151 4.4.2 Non-Collinear geometry 155 4.4.3 Ferromagnetic island 159 4.4.4 Metallic island 161 4.4.5 Shot noise 164 4.5 Cotunneling 167 4.5.1 Ferromagnetic island 167 4.5.2 Metallic island 168 4.5.3 Quantum dot 170 4.6 Strong coupling - Kondo effect 171 4.6.1 Perturbative-scaling approach 172 4.6.2 Numerical renormalization group 173 4.6.3 Gate-controlled spin-splitting in quantum dots 177 4.6.4 Non-equilibrium transport properties 182 4.7 4.6.5 Relation to experiment 184 RKKY interaction between quantum dots 184 4.7.1 Flux-dependent RKKY interaction 185 4.7.2 RKKY interaction - experimental results 188 References 190 5 Spin-transfer torques and nanomagnets 195 Daniel C. Ralph and Robert A. Buhrman 5.1 Spin-transfer torques 195 5.1.1 Intuitive picture of spin-transfer torques 196 5.1.2 The case of two magnetic layers 198 5.1.3 Simple picture of spin-transfer-driven magnetic dynamics 200 5.1.4 Experimental results 203 5.1.5 Applications of spin transfer torques 216 5.2 Electrons in micro- and nanomagnets 219 5.2.1 Micron-scale magnets and Coulomb blockade 220 5.2.2 Ferromagnetic nanoparticles 222 5.2.3 Magnetic molecules and the Kondo effect 227 References 234 6 Tunnel spin injectors 239 Xin Jiang and Stuart Parkin 6.1 Introduction 239 6.2 Magnetic tunnel junctions 241 6.2.1 Tunneling spin polarization 245 6.2.2 Giant tunneling using MgO tunnel barriers 247 6.3 Magnetic tunnel transistor 256 6.3.1 Hot electron devices 256

6.3.2 Energy-dependent electron transport in the magnetic tunnel transistor 263 6.4 Tunnel-based spin injectors 272 6.4.1 Spin injection 272 6.4.2 Spin injection using tunnel injectors 276 References 287 7 Theory of spin-transfer torque and domain wall motion in magnetic nanostructures 293 S. E. Barnes and S. Maekawa CONTENTS 7.1 Introduction 293 7.2 Landau-Lifshitz equations 294 7.2.1 Relaxation and the Landau-Lifshitz equations 296 7.3 Models for itinerant ferromagnets 298 7.3.1 Description of the ferromagnetic spin 300 7.3.2 Quantum effects 302 7.4 Angular momentum transfer for bi-layers 303 7.4.1 Gauge theory 307 7.4.2 Spin-motiveforces (smf) in bi-layers 310 7.5 Magnetic dynamics of bi-layers 312 7.5.1 Relaxation of dynamical modes 313 7.6 Description of the dynamical modes 314 7.6.1 Effective particle description of the dynamical modes 315 7.6.2 Static critical current 318 7.6.3 Stability of small-angle oscillations - dynamic critical points 319 7.6.4 Stability of the negative temperature fixed point 320 7.6.5 The role of the smf/emf due to dynamical modes 322 7.6.6 Interactions of ferro- and metallic layers 324 7.6.7 The relaxation bottleneck and dynamics of an FN-interface 325 7.6.8 Dynamics of FNF domains 327 7.6.9 Angular momentum transfer in FNF domains 328 7.6.10 Angular momentum transfer in NFN systems 329 7.7 Domain walls 329 7.7.1 Relaxation in domain walls 332 7.7.2 Angular momentum transfer in domain walls 333 7.7.3 Pinning of domain walls 335 7.7.4 The smf/emf produced by a domain wall 337 7.7.5 Applications of the smf produced by a domain wall 338 References 340

CONTENTS xi 8 Spin injection and spin transport in hybrid nanostructures 343 S. Takahashi, H. Imamura, and S. Maekawa 8.1 Introduction 343 8.2 Spin injection, spin accumulation, and spin current 344 8.2.1 Spin transport in non-local geometry 345 8.2.2 Spin accumulation signal 348 8.2.3 Non-local spin injection and manipulation 352 8.3 Spin injection into superconductors 353 8.4 Spin Hall effect 357 8.4.1 Basic formulation 358 8.4.2 Scattering probability and Boltzmann equation 360 8.4.3 Spin and charge Hall currents 363 8.4.4 Spin-orbit coupling parameter 364 8.4.5 Non-local spin Hall effect 365 8.5 Appendix : Electrochemical potentials in F1/N/F2 366 References 367 9 Andreev reflection at ferromagnet/ superconductor interfaces 371 H. Imamura, S. Takahashi, and S. Maekawa 9.1 Basic theory of Andreev reflection 371 9.2 Point-contact Andreev reflection 376 9.3 Ferromagnet/superconductor/ferromagnet double junctions 383 9.4 Crossed Andreev reflection 388 References 393