Non-perturbative Effects in ABJM Theory from Fermi Gas Approach

Similar documents
ABJM 行列模型から. [Hatsuda+M+Okuyama 1207, 1211, 1301]

Large N Non-Perturbative Effects in ABJM Theory

M-theoretic Matrix Models

Instanton Effects in Orbifold ABJM Theory

Non-perturbative effects in ABJM theory

arxiv: v1 [hep-th] 7 Jun 2013

Quantum gravity at one-loop and AdS/CFT

A supermatrix model for ABJM theory

ABJM Baryon Stability at Finite t Hooft Coupling

The Partition Function of ABJ Theory

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

Matrix models from operators and topological strings

Non-perturbative effects in string theory and AdS/CFT

Topological Holography and Chiral Algebras. Work in progress with Kevin Costello

Knot Homology from Refined Chern-Simons Theory

Membranes and the Emergence of Geometry in MSYM and ABJM

M-theory S-Matrix from 3d SCFT

One Loop Tests of Higher Spin AdS/CFT

Resurgence Structure to All Orders of Multi-bions in Deformed SUSY Quantum Mechanics

arxiv: v3 [hep-th] 7 May 2015

Six-point gluon scattering amplitudes from -symmetric integrable model

How to resum perturbative series in supersymmetric gauge theories. Masazumi Honda ( 本多正純 )

Duality Chern-Simons Calabi-Yau and Integrals on Moduli Spaces. Kefeng Liu

Resurgent Transseries: Beyond (Large N) Perturbative Expansions

Topological String Theory

arxiv: v3 [hep-th] 18 Apr 2014

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Holographic Anyons in the ABJM theory

Near BPS Wilson loop in AdS/CFT Correspondence

PUZZLES IN 3D CHERN-SIMONS-MATTER THEORIES

Refined Chern-Simons Theory, Topological Strings and Knot Homology

Defining Chiral Gauge Theories Beyond Perturbation Theory

Think Globally, Act Locally

AdS 6 /CFT 5 in Type IIB

Strings and Black Holes

Spectrum of Holographic Wilson Loops

t Hooft Loops and S-Duality

Planar Limit Analysis of Matrix Models

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

Anomalous Strong Coupling

String Duality and Localization. Kefeng Liu UCLA and Zhejiang University

Chern-Simons Theories and AdS/CFT

Dualities and Topological Strings

Putting String Theory to the Test with AdS/CFT

arxiv: v2 [hep-th] 12 Jan 2012

Localization and Conjectures from String Duality

Counting black hole microstates as open string flux vacua

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

arxiv: v1 [hep-th] 17 Dec 2010

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Tachyon Condensation in String Theory and Field Theory

Elements of Topological M-Theory

Towards solution of string theory in AdS3 x S 3

Topological Strings, D-Model, and Knot Contact Homology

Three-sphere free energy for classical gauge groups

Lecture 12 Holomorphy: Gauge Theory

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia

Higher Spin AdS/CFT at One Loop

Boundaries, Interfaces and Dualities

Holographic Entanglement Entropy for Surface Operators and Defects

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

A Landscape of Field Theories

Chern-Simons Theory & Topological Strings

Knot Contact Homology, Chern-Simons Theory, and Topological Strings

Knot invariants, A-polynomials, BPS states

Branes in Flux Backgrounds and Dualities

Little strings and T-duality

Volume Conjecture: Refined and Categorified

SUPERCONFORMAL FIELD THEORIES. John H. Schwarz. Abdus Salam ICTP 10 November 2010

Spiky strings, light-like Wilson loops and a pp-wave anomaly

On higher-spin gravity in three dimensions

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Bubbling Geometries for Half BPS Wilson Lines. Satoshi Yamaguchi (IHES) S. Yamaguchi, hep-th/ S. Yamaguchi, to appear

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

THE MASTER SPACE OF N=1 GAUGE THEORIES

Quantum Dynamics of Supergravity

Conformal Field Theory with Two Kinds of Bosonic Fields and Two Linear Dilatons

arxiv: v2 [hep-th] 4 Jun 2016

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

Knot polynomials, homological invariants & topological strings

HIGHER SPIN ADS 3 GRAVITIES AND THEIR DUAL CFTS

Anomalies, Gauss laws, and Page charges in M-theory. Gregory Moore. Strings 2004, Paris. Related works: Witten , , ,

VI.D Self Duality in the Two Dimensional Ising Model

Topological Strings and Donaldson-Thomas invariants

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

Interacting Membranes

A Brief Introduction to AdS/CFT Correspondence

New and old N = 8 superconformal field theories in three dimensions

Open/Closed Duality in Topological Matrix Models

Think Globally, Act Locally

NUMBER THEORY IN STRING THEORY: SKEW, MOCK, FALSE, AND QUANTUM

Introduction to AdS/CFT

Anomalous discrete symmetries in D-brane models

8.821 F2008 Lecture 18: Wilson Loops

Fixing all moduli in F-theory and type II strings

8.821 String Theory Fall 2008

Spinning strings and QED

Brane decay in curved space-time

Overview of classical mirror symmetry

Seiberg Duality in Matrix Model

Transcription:

Non-perturbative Effects in ABJM Theory from Fermi Gas Approach Sanefumi Moriyama (Nagoya/KMI) [arxiv:1106.4631] with H.Fuji and S.Hirano [arxiv:1207.4283, 1211.1251, 1301.5184] with Y.Hatsuda and K.Okuyama

Previously in Fuji-Hirano-M Perturbative Terms of ABJM Matrix Model N 1 =N 2 =N Z(N) = in 't Hooft Expansion Sum Up To

Previously in Fuji-Hirano-M Z(N) = Airy Function (Up To Constant Maps & Instanton Effects) cf: [Marino-Putrov, Honda et al] Renormalization of 't Hooft coupling

Previous Method (Analytic Continuation N 2 - N 2 ) Chern-Simons Theory on Lens Space S 3 /Z 2 (String Completion) Open Top A-model on T*(S 3 /Z 2 ) (Large N Duality) Closed Top A on Hirzebruch Surface F 0 = P 1 x P 1 (Mirror Symmetry) Closed Top B on Spectral Curve u v = H( x, y ) Holomorphic Anomaly Equation!!

Today: Non-Perturbative Effects Not Just Worldsheet Instanton Or Membrane Instanton, But Also Their Bound States Not Qualitative Arguments, But Quantitative Analysis

Contents 1. Motivation 2. Fermi Gas 3. Exact Results 4. NonPerturbative Effects 5. Further Direction

Motivation1 M2-brane ABJ(M) N=6 Chern-Simons Theory (N 1,N 2,k) (N 1 +N 2 )/2 M2 with (N 1 -N 2 ) Fractional M2 on C 4 /Z k Special Case No Fractional Branes: N 1 =N 2 =N Flat Space: k=1 IIA (C 4 /Z k CP 3 x R x S 1 ): k= with N/k Fixed

Motivation1 M2-brane Partition Function of M2 WorldVolume Theory N x M2 Z = Airy(N) Exp[-N 3/2 ] DOF N 3/2 Reproduced [Drukker-Marino-Putrov] Also Non-Perturbative Corrections

Non-Perturbative Corrections [Drukker-Marino-Putrov] 't Hooft Expansion in Matrix Model Exp[-2π 2N/k] Identified as String Wrapping CP 1 in CP 3 Borel Sum-like Analysis Exp[-π 2Nk] Identified as D2-brane Wrapping RP 3 in CP 3

Motivation2 From Gaussian To ABJM ABJM CS Super CS q-deform Gauss Superalg

Message from Airy1 Hidden Structure? String Theory (Dual Resonance Model) Veneziano Amplitude String Conformal Symmetry [Virasoro, Nambu] Membrane Theory Free Energy as Airy Function Hidden Structure for Membrane?

Message from Airy2 Trinity? M- Theory Wave Function of The Universe [Ooguri-Verlinde-Vafa] Membrane WorldVolume Theory [Aharony-Bergman-Jafferis-Maldacena] Airy Function Chern-Simons Theory All Genus Partition Function [Fuji-Hirano-M]

Message from Airy3 Ai(N) = (2πi) -1 dμ Exp[μ 3 /3 - μn] Chern-Simons Partition Function? Z CS (N) = DA Exp A da- A A A Grand Potential in Statistical Mechanics? e J(μ) = 1 + N=1 Z(N) e -μn Z(N) = (2πi) -1 dμ Exp[J(μ) - μn] What is the Statistical Mechanical System?

Contents 1. Motivation 2. Fermi Gas 3. Exact Results 4. NonPerturbative Effects 5. Further Directions

ABJM Matrix Model Z(N) = N 1 =N 2 =N

ABJM Matrix Model Z(N) = N 1 =N 2 =N [ sinh sinh / cosh ] 2

Hidden Structure as Fermi Gas 1. Cauchy Determinant sinh sinh / cosh = Det cosh -1 = σ (-1) σ i [2 cosh (μ i -ν σ(i) )/2] -1 2. Trivialization of One Permutation σ,τ (-1) σ+τ i [2 cosh(μ i -ν σ(i) )/2] -1 [2 cosh(μ i -ν τ(i) )/2] -1 = N! σ (-1) σ i [2 cosh(μ i -ν i )/2] -1 [2 cosh(μ i -ν σ(i) )/2] -1 3. Fourier Transform (μ,ν) (p,q) 4. (μ,ν) Gaussian Integration

Hidden Structure as Fermi Gas After Some Calculation,... Non-Interacting Fermi Gas [Marino-Putrov] Z(N) = (N!) -1 σ (-1) σ i dq i q i ρ q σ(i) Density Matrix ρ = e -H ρ = [2 cosh q/2] -1/2 [2 cosh p/2] -1 [2 cosh q/2] -1/2 Statistical Mechanics Approach N 3/2 & Airy Easily(!) Reproduced

Statistical Mechanics Canonical Ensemble: Sum in Conjugacy Class Grand Canonical Ensemble Grand Potential Inversely e J (μ) = 1 + N=1 Z(N) e -μn Z(N) = (2πi) -1 dμ e J (μ) - μn

WKB Analysis ħ(=2πk)-perturbation Systematic Expansion in e -2μ ~ Exp[-π 2Nk] J(μ) = J pert (μ) + J np (μ) J pert (μ) = C k μ 3 /3 + B k μ + A k J np (μ) = l=1 ( α (l) μ 2 + β (l) μ + γ (l) ) e -2lμ (At Most) Quadratic Prefactor (cf. Linearity in "log[2coshq/2] ~ q") (α (l), β (l), γ (l) ) Determined in ħ-perturbation

Contents 1. Motivation 2. Fermi Gas 3. Exact Results 4. NonPerturbative Effects 5. Further Direction

World Records of Exact Values [Hatsuda-M-Okuyama 2012/07] N max = 9 for k=1 [Putrov-Yamazaki 2012/07] N max = 19 for k=1 [Hatsuda-M-Okuyama 2012/11] N max = 44 for k=1 N max = 20 for k=2 N max = 18 for k=3 N max = 16 for k=4 N max = 14 for k=6

Sample (For k=1) Z(1) = 1/4 Z(2) = 1/16π Z(3) = (π-3)/2 6 π Z(4) = (-π 2 +10)/2 10 π 2 Z(5) = (-9π 2 +20π+26)/2 12 π 2 Z(6) = (36π 3-121π 2 +78)/2 14 3 2 π 3 Z(7) = (-75π 3 +193π 2 +174π-126)/2 16 3π 3 Z(8) = (1053π 4-2016π 3-4148π 2 +876)/2 21 3 2 π 4 Z(9) = (5517π 4-13480π 3-15348π 2 +8880π+4140)/2 23 3 2 π 4

Method: Factorization [Tracy-Widom] ρ(q 1,q 2 ) = E(q 1 ) E(q 2 ) [M (q 1 ) + M(q 2 )] -1 ρ n (q 1,q 2 ) = Σ m (-1) m [ρ m E](q 1 ) [ρ n-1-m E](q 2 ) x [M(q 1 ) - (-1) n M(q 2 )] -1

Method: Hankel Matrix Density Matrix ρ: Isospectral to Hankel Matrix ρ 0 0 ρ 1 0 ρ 2 0 0 ρ 1 0 ρ 2 0 ρ 3 ρ 1 0 ρ 2 0 ρ 3 0 0 ρ 2 0 ρ 3 0 ρ 4 ρ 2 0 ρ 3 0 ρ 4 0 0 ρ 3 0 ρ 4 0 ρ 5 ρ = ρ + 0 0 ρ - A Magic Formula For Hankel Matrix [Hatsuda-M-Okuyama] det (1+zρ - ) / det (1-zρ + ) = [(1-zρ + ) -1 E + ] 0 / [E + ] 0

Contents 1. Motivation 2. Fermi Gas 3. Exact Results 4. NonPerturbative Effects 5. Further Direction

Fitting Grand Potential J(μ) = log[ 1 + Nmax N=1 Z(N) e μn ] Strategy: Plot & Fit J(μ) vs J pert (μ) (J(μ)-J pert (μ))/e -4μ/k vs α 1 μ 2 +β 1 μ+γ 1 (J(μ)-J pert (μ)-j np(1) (μ))/e -8μ/k vs α 2 μ 2 +β 2 μ+γ 2 (J(μ)-J pert (μ)-j np(1) (μ)-j np(2) (μ))/e -12μ/k vs α 3 μ 2 +β 3 μ+γ 3

Example: k=1 J(μ) (J(μ)-J pert (μ))/e -4μ (J(μ)-J pert (μ)-j np(1) (μ))/e -8μ (J(μ)-J pert (μ)-j np(1) (μ)-j np(2) (μ))/e -12μ

Oscillatory Behavior!! Grand Potential Original Definition e J(μ) = 1 + N=1 Z(N) e -μn Periodic in μ = μ + 2πi No More in J pert (μ) etc.

To Remedy the 2πi-Periodicity 2πi-Periodic Grand Potential Exp[J(μ)] = N=- Exp[J naive (μ+2πin)] J naive (μ) = J pert (μ) + J np (μ) J(μ) = J naive (μ) + J osc (μ) Results: J osc (μ) = 2 Cos[C k μ 2 + B k - 8/3k] e -8μ/k +... Hereafter, J osc (μ) Abbreviated

Results from Fitting J k=1 (μ) = [(4μ 2 +μ+1/4)/π 2 ]e -4μ + [-(52μ 2 +μ/2+9/16)/(2π 2 )+2]e -8μ + [(736μ 2-152μ/3+77/18)/(3π 2 )-32]e -12μ +... J k=2 (μ) = [(4μ 2 +2μ+1)/π 2 ]e -2μ + [-(52μ 2 +μ+9/4)/(2π 2 )+2]e -4μ + [(736μ 2-304μ/3+154/9)/(3π 2 )-32]e -6μ +... J k=3 (μ) = [4/3]e -4μ/3 + [-2]e -8μ/3 + [(4μ 2 +μ+1/4)/(3π 2 )+20/9]e -4μ +... J k=4 (μ) = [1]e -μ + [-(4μ 2 +2μ+1)/(2π 2 )]e -2μ + [16/3]e -3μ +... J k=6 (μ) = [4/3]e -2μ/3 + [-2]e -4μ/3 + [(4μ 2 +2μ+1)/(3π 2 )+20/9]e -2μ +... up to 7-instanton

Schematically J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ +...... J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3)

Worldsheet Instanton From Top String Implication from Topological Strings J WS k (μ) = m=1 d (m) k e -4mμ/k Multi-Covering Structure d (m) k = g n m (-1) m/n N g n/n (2 Sin[2πn/k]) 2g-2 Gopakumar-Vafa Invariant on F 0 =P 1 xp 1 N g n

Match with Topological String? J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ +...... J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3)

Match with Topological String? J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ +...... J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3) : Match : Divergent : Not-Match

First Guess Membrane Instanton & Worldsheet Instanton, Same Origin in M-theory d k (m) e -4mμ/k = (divergence) + [#μ 2 +#μ+#] e -2lμ Around k = 2m/l Correctly Speaking,...

Cancellation of Divergences? J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ +...... MB(2) J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3) MB(1)

Cancellation of Divergence k=1 k=2 k=3 k=4 k=5 k=6 WS1 WS2 WS3 MB4 MB3 MB2 Worldsheet m-instanton [Sin 2πm/k] -1 Membrane l-instanton [Sin πlk/2] -1 WS4 MB1

More Dynamical Figure k=1 k=2 k=3 k=4 k=5 k=6 WS1 WS2 WS3 MB4 MB3 MB2 Worldsheet m-instanton [Sin 2πm/k] -1 Membrane l-instanton [Sin πlk/2] -1 WS4 MB1

1-Membrane Instanton Vanishing in k=odd Canceling Divergence Matching the WKB data a k (1) = -4(π 2 k) -1 Cos[πk/2] b k (1) = 2π -1 Cot[πk/2] Cos[πk/2] c k (1) =...

How About? (l, m) Bound State? e- l x 2μ - m x 4μ/k Ex: e -3μ Effects in k=4 Sector From Both (0,3) & (1,1) But No Information on Bound States Yet.

2-Membrane Instanton Cancellation of Divergence in (2,0)+(0,2m+1) m k=3 [Calvo-Marino] k=1 a k (2) =... b k (2) =... c k (2) =... l

Bound States (1,m)? Cancellation of Divergence in (2,0)+(1,m)+(0,2m) k=4 m k=2 l

(1,m) Bound States Cancellation of Divergence in (2,0)+(1,m)+(0,2m) Match with (1,1)+(0,3) in k=4 Sector,... (1,m) Bound States J (1,m) k (μ) =... = a (1) k d (m) k e -2μ-4mμ/k

More Bound States Similarly, (2,m) Bound States J (2,m) k (μ) = (a (2) k +(a (1) k ) 2 /2) d (m) k e -4μ-4mμ/k Match with (2,2)+(0,5) in k=3,... (3,m) Bound States J (3,m) k (μ) = (a (3) k +a (2) k a (1) k +(a (1) k ) 3 /6) d (m) k e -6μ-4mμ/k

All Bound States Finally J (l,m) k (μ) = (a (l 1) k ) n 1 /(n1 )!... (a (l L) k ) n L /(n L )! x d (m) k e -2lμ-4mμ/k Sum Over n 1 l 1 +... + n L l L = l (a) n /(n)! Exp[a]??

To Summarize Originally J(μ) = J pert (μ) + J MB (μ) + J WS (μ) + J bnd (μ) J pert (μ) = #μ 3 + #μ + # J MB (μ) = l>0 J MB(l) (μ) = l>0 (#μ 2 + #μ + #) e -2lμ J WS (μ) = m>0 J WS(m) (μ) = m>0 # e -4mμ/k J bnd (μ) = l>0,m>0 J (l,m) (μ)

Effective Chemical Potential μ eff = μ + # l a (l) k e -2lμ Grand Potential J(μ) = J pert (μ eff ) + J' MB (μ eff ) + J WS (μ eff ) J' MB (μ eff ) = l>0 (#μ eff + #) e -2lμ eff Bound States in Effective WS Instanton Membrane Instanton in Linear Functions

Contents 1. Motivation 2. Fermi Gas 3. Exact Results 4. NonPerturbative Effects 5. Further Direction

Further Direction [Work in Progress] Wilson Loops? ABJ Extensions? Understand Generality of Cancellation Understand Membrane Instantons from Matrix Model Terminology Thank You For Your Attention.