Transfer function and the Laplace transformation

Similar documents
REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

LaPlace Transform in Circuit Analysis

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

CSE 245: Computer Aided Circuit Simulation and Verification

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Circuit Transients time

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Chapter 12 Introduction To The Laplace Transform

Elementary Differential Equations and Boundary Value Problems

Charging of capacitor through inductor and resistor

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Why Laplace transforms?

Physics 160 Lecture 3. R. Johnson April 6, 2015

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

Lecture 26: Leapers and Creepers

Poisson process Markov process

Laplace Transforms recap for ccts

Lecture 4: Laplace Transforms

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Wave Equation (2 Week)

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

Chap.3 Laplace Transform

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

( ) ( ) + = ( ) + ( )

On the Speed of Heat Wave. Mihály Makai

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Final Exam : Solutions

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

THE LAPLACE TRANSFORM

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

s-domain Circuit Analysis

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE202 Circuit Theory II

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

(1) Then we could wave our hands over this and it would become:

EE 434 Lecture 22. Bipolar Device Models

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

6.8 Laplace Transform: General Formulas

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

PWM-Scheme and Current ripple of Switching Power Amplifiers

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

where: u: input y: output x: state vector A, B, C, D are const matrices

Chapter 6. Laplace Transforms

H is equal to the surface current J S

EXERCISE - 01 CHECK YOUR GRASP

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

1 Finite Automata and Regular Expressions

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex?

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

PFC Predictive Functional Control

( ) = Q 0. ( ) R = R dq. ( t) = I t

Chapter 9 The Laplace Transform

Chapter 7: Inverse-Response Systems

Control System Engineering (EE301T) Assignment: 2

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

AC STEADY-STATE ANALYSIS

Midterm exam 2, April 7, 2009 (solutions)

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

Instrumentation & Process Control

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

EE 301 Lab 2 Convolution

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Coherence and interactions in diffusive systems. Cours 4. Diffusion + e-e interations

( ) C R. υ in RC 1. cos. ,sin. ω ω υ + +

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 10 : State Space Response

8. Basic RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E

EEEB113 CIRCUIT ANALYSIS I

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

Math 266, Practice Midterm Exam 2

Chapter 9 - The Laplace Transform

Partial Fraction Expansion

Transcription:

Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and L Simpl lag nwork (low pa filr). INTRODUTION Tranfr funcion ar ud o calcula h rpon c( ) of a ym o a givn inpu ignal r(). Hr and for h im variabl. r( ) Inpu ignal Elcronic circui, mchanical ym, hrmal ym c( ) Oupu ignal Phyical ym Fig. Givn an inpu ignal, w would lik o know h ym rpon c(). Th dynamic bhavior of a phyical ym i ypically dcribd by diffrnial (and/or ingral) quaion: For a givn inpu ignal r(), h quaion nd o b olvd in ordr o find c(). Alrnaivly, inad of rying o find h oluion in h im domain, ach imvariabl, a wll a h diffrnial quaion, can b ranformd o a diffrn variabl domain in which h oluion can b obain in a mor raighforward way; hn an invr ranform would ak plac h oluion ino h im domain Original problm r( ), diffrnial Eq. Tranform Problm in ranform pac R() Algbraic opraion Difficul oluion Eair oluion Soluion of original problm c ( ) Invr ranform Soluion in ranform pac () Fig. Solving h quaion in a diffrn domain and hn applying an invr ranform o obain h oluion in h im domain

On of ho ranform i h Laplac ranformaion. THE LAPLAE TRANSFORMATION L Th Laplac ranform F=F() of a funcion f = f ( ) i dfind by, f L F L ( f ) = F F() f ( ) - () Th variabl i a complx numbr, = a +j. f () F F() f a Tim domain Laplac domain Exampl f i h uni p funcion f Tim domain F() f ( ) - - = = Laplac domain ()

Exampl. Afr an xrnal xciaion ha oppd, a ignal rpon (mpraur, for xampl) from a ym dcay xponnially. L find ou how uch a dcay i characrizd by a Laplac ranformaion. f i a dcaying xponnial f ( ) A - f F() F() = f ( ) - A A - - () Tim domain Laplac domain Exampl. A w mniond in h inroducion, h rpon of a ym i govrnd by df diffrnial quaion. W would lik o know hn, how h fir drivaiv funcion a wll d f a h cond drivaiv funcion ranform by a Laplac ranformaion. For impliciy, df d f l u h noaion: = f and = f. If F = L ( f ) l valua L (f ). L ( f ' ) f ' ( ) - f ( ) - o f ( ) - f ( ) f ( ) - f ( ) [ L ( f ) ] f ( ) F() Laplac ranformaion of (3) h fir drivaiv funcion of f. Typically, on procd puing h iniial condiion qual o zro. (Th iuaion wih iniial condiion diffrn han zro can b addd in a para implr procdur). Thu,

L ( f ' ) F() Laplac ranformaion of h drivaiv of f (3) wih h iniial condiion qual o zro If F = L ( f ) valua L (f ) L ( f ") f " ( ) - f ' ( ) f ( ) F() Laplac ranformaion of h (4) cond drivaiv of f Typically, on procd puing h iniial condiion qual o zro. (Th iuaion wih iniial condiion diffrn han zro can b addd in a para implr procdur). Thu, L ( f ") F() Laplac ranformaion of h cond drivaiv (4) of f wih h iniial condiion qual o zro Exampl. Somim h ignal rpon from a ym (h volag acro a capacior, for xampl) mu b givn in rm of h ingral of anohr quaniy (h ingral of h corrponding currn acro h capacior). I i convnin, hn, o obain h Laplac ranformaion of an indfini ingral g ( ) f ( u) du. If F = L ( f ) and g ( ) f ( u) du, valua L (g) L ( ) (g) g - [ f ( u) du ] - - - [ f ( u) du ] [ f ( ) ] [ - ] f ( ) - F() Laplac ranformaion of h (5) indfini ingral 3. TRANSFER FUNTIONS r( ) Inpu ignal Diffrnial Eq govrning h bhavior of h ym c( ) Oupu ignal Fig. 3 Schmaic of h ym rpon in h im domain

In a impl ym, h oupu c() may b govrnd by a cond ordr diffrnial quaion a c + a c + a o c = r () Applying h Laplac ranform (3) and (4), on obain ( a + a + a o ) () = R () () a + a a o R() In a mor gnral ca, h diffrnial quaion may b of highr ordr (highr han ). Alo h inpu may b compod of drivaiv of a givn funcion r=r(). Thrfor h facor may bcom a mor laborad funcion of. a + a a Thu, for a ym in gnral, o () = G() R() (6) Noic, G=G() characriz h phyical ym. I i calld h ranfr funcion. I i mor ypical o wri, () G() (7) R() from which, for a givn R=R() h funcion =() can b obaind. R( ) Inpu ignal G() ( ) Oupu ignal Fig. 4 Schmaic of h ym rpon in h Laplac domain ( 3) Exampl. A ym i characrizd by h ranfr funcion G(). ( ) ( 6) Find ou how h ym rpond o a xponnially dcaying inpu r( ) -. Anwr: Th Laplac ranformaion of r giv, uing xprion (), R() =

Th oupu ignal, in h Laplac domain, i hn givn by, () G() R() () ( 3) ( ) ( 6) (8) In a ypical procdur, whn poibl, () i r-wrin in h following form: K K K3 (), (9) 6 wih K, K, K 3, o b rmind. Tha i, w will b looking for K, K, K 3 uch ha, ( 3) ( ) ( 6) K K K3 () 6 Noic h following raighforward mhod o find K : From (9), ( ) Uing (8), K K3 () K ( ) ( ) 6 ( 3) ( 6) K K3 K ( ) ( 6 ) Taking h limi whn -, (- 3) (- 6) (- ) K K3 K ( ) ( ) 6.8 = K Tha i, K ( ) () lim.8 Similarly K ( 6) () lim 6 -.3 K 3 ( 6) () lim -.5

Thu, ().8 -.3 -.5 () 6 Now, uing () w idnify h im dpndn funcion h individual Laplac ranform com from, c( ).8 -.3-6.5- Anwr. Rcapiulaing h proc, r( ) - Original problm r( ) Difficul oluion Sym Diffrnial Eq Ingral Eq. c( ).8 -.5 -.3 Soluion of original problm c ( ) - 6 Laplac Tranform Invr ranform Problm in Laplac pac R() R() = G() + algbraic opraion G() 3 ( ) ( 6) () Soluion in Laplac pac ().8 -.3 6 -.5 Fig. 5 Schmaic rprnaion of h oluion procdur in h prviou xampl. In h prviou xampl, h ranfr funcion wa givn. In h nx cion, w will figur ou h ranfr funcion for h ca of lcrical ym. 4. ELETRIAL SYSTEMS L analyz h hr baic lmn R, and L individually. L I I () b h Laplac ranform of h currn i= i ().

i vc vl L vr R Fig. 6 Elmnary paiv circui lmn apacior v c () = q() = ( u ) uing (5) du i V c () I() V c () I() () Dfining h capacianc impdanc, Z c (3) w can xpr, V c () = Z c I () (4) Inducor v L () = d L i ) uing (3)' ( V L () I L () (5) Dfining h inducor impdanc, Z L w can xpr, L (6) V L () = Z L I () (7) Rior v R () = R i () V R () R () (8) I Tim domain Laplac domain Analyi of a impl lag nwork Applying Kirchoff law in h im-domain and in h Laplac -domain

v in () R i q v ou () Fig. 7 Low pa filr in h im domain. v in () = R i () + = R i () + On h ohr hand v ou () q() q() ( u ) uing (5) du i ( u ) uing (5) du i V in () V ou () R I() I() R I() (9) I() () From (9) and () V ou () R V in / Vou G() () V R in V in ( ) Inpu ignal G ( ) R V ou ( ) Oupu ignal Fig. 8 Tranfr funcion (in h Laplac domain) of a low pa filr. Analyi of a impl lag nwork Mhod uing h complx impdanc in h Laplac domain

V in () R V ou () q I() Z V in () = ( R Z ) Vin() () ( R Z ) I I() On h ohr hand, V ou () Z Z Uing xprion (9), Z c V ou ( ) V G() V ou in I() V in () ( R Z, ( ) ( ) V ( R in ) ) R R V in ( )