Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Similar documents
Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Instructions for Section 1

AP Calculus BC AP Exam Problems Chapters 1 3

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

AP Calculus Multiple-Choice Question Collection

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

CBSE 2015 FOREIGN EXAMINATION

Trigonometric functions

The University of Sydney MATH 2009

ASSERTION AND REASON

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Exponential Functions

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

Board Answer Paper: October 2014

HYPERBOLA. AIEEE Syllabus. Total No. of questions in Ellipse are: Solved examples Level # Level # Level # 3..

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

HIGHER ORDER DIFFERENTIAL EQUATIONS

Lecture 20: Minimum Spanning Trees (CLRS 23)

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

Weighted Graphs. Weighted graphs may be either directed or undirected.

Things I Should Know Before I Get to Calculus Class

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Section 4.7 Inverse Trigonometric Functions

METHOD OF DIFFERENTIATION

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

Mock Exam 2 Section A

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018

7. Indefinite Integrals

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Ch 1.2: Solutions of Some Differential Equations

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

Strongly connected components. Finding strongly-connected components

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

( β ) touches the x-axis if = 1

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Logarithms and Exponential Functions. Gerda de Vries & John S. Macnab. match as necessary, or to work these results into other lessons.

MATH1013 Tutorial 12. Indefinite Integrals

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

CBSE SAMPLE PAPER SOLUTIONS CLASS-XII MATHS SET-2 CBSE , ˆj. cos. SECTION A 1. Given that a 2iˆ ˆj. We need to find

The Z transform techniques

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

d e c b a d c b a d e c b a a c a d c c e b

Tangram Fractions Overview: Students will analyze standard and nonstandard

In which direction do compass needles always align? Why?

TOPIC 5: INTEGRATION

Solutions to Problems Integration in IR 2 and IR 3

Lecture 4. Conic section

50 AMC Lectures Problem Book 2 (36) Substitution Method

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

Lecture 21 : Graphene Bandstructure

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

CONTINUITY AND DIFFERENTIABILITY

b. moving away from the origin and towards its starting position

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 1 6 XII STD BATCHES [CF] Date: PHYSIS HEMISTRY MTHEMTIS

MA 351 Fall 2007 Exam #1 Review Solutions 1

Math Calculus with Analytic Geometry II

Chapter Taylor Theorem Revisited

CALCULUS II MATH Dr. Hyunju Ban

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

1997 AP Calculus AB: Section I, Part A

Math 20C Multivariable Calculus Lecture 5 1. Lines and planes. Equations of lines (Vector, parametric, and symmetric eqs.). Equations of lines

Floating Point Number System -(1.3)

Floating Point Number System -(1.3)

Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function

Background Trigonmetry (2A) Young Won Lim 5/5/15

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

SUBJECT: MATHEMATICS ANSWERS: COMMON ENTRANCE TEST 2012

Section 11.6: Directional Derivatives and the Gradient Vector

Answer: A. Answer: A. k k. Answer: D. 8. Midpt. BC = (3, 6) Answer: C

TO: Next Year s AP Calculus Students

Math 190 Chapter 5 Lecture Notes. Professor Miguel Ornelas

VLSI Testing Assignment 2

Section 7.3 Double Angle Identities

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

Rectangular Waveguides

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

Pythagorean Theorem and Trigonometry

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

2 (x 2 + a 2 ) x 2. is easy. Do this first.

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Chapter 8: Methods of Integration

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

MATHEMATICS (Part II) (Fresh / New Course)

OpenMx Matrices and Operators

3-2-1 ANN Architecture

MATHEMATICS FOR MANAGEMENT BBMP1103

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations

Transcription:

Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G() is vn. H() f() f( ), H( ) f( ) f(), H( ) H() nd H() is odd. f () + f ( ) f () f ( ) () f () +, wic is t sum of n vn nd n odd function.. () sin ( + π) (-sin ) sin. sin is priodic nd t smllst priod is π. () sin ( ) is not priodic. (c) (i) π (ii) π/

. - - - - O - - - 6. () f( + ) f() g() + g() f() ; g( + ) g() g() f() f() Put, f() f()g(). () ; g() [g()] [f()].() From (), f() [ g()] f() or g() / If g() /, from (), / / [f()], [f()] /, wic s no solution. f(), tn from (), g() [g()] g() or g() Howvr, if f() nd g(), w v g() g( + ) g() g() + f() f(), nc g(), contrdicts wit ssumption. f() nd g() () f (), g () f ( + ) f () f () g( + ) g() g() g() lim lim, lim lim, lim lim f ( + ) f () f ()g() + g()f () g() f () (i) f '() lim lim f ()lim + g()lim f() + g() g() g( + ) g() g()g() f ()f () g() f () (ii) g'() lim lim g()lim f ()lim g() f() f() (c) From (), f () g () f(), f() k cos + k sin, f(), f () k, k f() sin From (), g () f () g(), g() k cos + k sin, g(), g () k, k g() cos. 7. f, g r vn f(-) f() nd g(-) g() f(-) + g(-) f() + g() f + g is vn. n Lt () i, tn (-) ( ) i i i i i i (), i is vn. i n i. () Fls, f() is odd, f(). () Tru, () [ g() + g( ) ], (-) [ g( ) + g() ] (), () is vn. n i n i

9. (c) Tru, If f is injctiv, tn f( ) f( ). If f is vn, tn f(-) f(), ut t injctiv proprt, w v -,. Tis lds to contrdiction unlss t domin of f {}. (d) Tru, If f is incrsing, < f( ) < f( ). If >, w v f(-) < f(). If <, w v f(-) > f(). In ot css, w don t v f(-) f() nd f is not vn. () If f, g r incrsing, tn < f( ) < f( ) nd g( ) < g( ). () +, +, Oviousl, f( ) + g( ) < f( ) + g( ). f + g is incrsing. fg is not incrsing, f(), g() r incrsing, ut f()g() is not incrsing. f o g is incrsing sinc < g( ) < g( ) f(g( )) < f(g( )). 6 Intrcpt & Inflion: (,) - - O - - () ' ( 6 + + ) ( + )( ) '' ( + ) Intrcpt : (,) M : (, ),Min:(, ) Inflion :(,), Asmptot : Smmtric out origin. 6 - - - - - O 6 - - - (c) ( ) ', " M (, /) Asmptots : nd Inflion (, /9) - Intrcpt (,) (d) + + () Intrcpt (,),(,-) - - - - O - - - - - ( + )( ) ' ( ) " ( ) Intrcpt (-,) M (-,), Min (, ) Asmptots :, - - - O - - - Oliqu smptot : + Asmptot: - - O 6 - - (f) ( ) ' ( ) ( + ) ( + ) " ( ) ( + ) M Min,, Inflion : (,) Asmptots: - - - - O - - Intrcpt:(,) ±, - Smmtric out origin -

. ( ) ( ) ( ) ' / ( ) ( ) / " 9( ) (-,/) / (/, /) / (/,) (, + ) + + + - ± + - ± + + + + + M :, Point of inflion :. T rquird r A A' ( ), Min : (, ) ±,, < / ( ) /.. - -. - -. O... -. - -. - - - O ( ) A" A" ± ± < - M of A t ±. T rquird distnc D D' ( ) + + (du to smmtr, w tk > for simplicit), ln ln, ln ln + Wn, D. ln ln ln + Wn < <, D < nd wn >, D >. Min of D. -t cot α sin t, -t cot α cos t -t cot α cot α sin t d csc α tcotα (sin αcos t cosα sin t) csc α tcotα sin(t α) csc α d t cot α t cot α csc α[ cos( t + π α) cot α sin( t + π α) ] t cot α ( csc α) [ sin α cos( t + π α) cos αsin( t + π α) ] tcotα tcotα ( csc α) sin( t + π α) ( csc α) sin( t + π α) (n ) π + α sin (t + π - α) t + π - α nπ t wr n Z. tcotα sin( t + π α)

(i) Wn n m (odd), m Z, d (csc α) t t m (m ) π + α..() m cotα t m cot α sin(mπ α) (csc α) sin α < is m wn t t m- s in (). (ii) Wn n m (vn), m Z, d (csc α) t m cot α sin(mπ + π α) is min wn t t m, s in (). (m ) π +..() α t m (csc α) Sustitut t vlus of t m- in -t cot α sin t, w gt : m [(m) π+α]cot α (m) πcot α αcot α { sin α} sin[(m ) π + α] Sinc t, - is dcrsing function, t lrgst mimum is -α cot α sin α, wr t α/ wr m in (). T lst prt grp is sown on t rigt ov. t nvlops wic ncloss t curv -t cot α sin t...() π t ± r. () sin, cos.. () m cot α t cot α sin( π α) (csc α) sin α > t m Sinc cos, trfor is lws twn nd +. () From (), sin sin nπ, wr n Z. nπ /, cos, t nπ / is ± Wn nπ /, nπ /. (nπ /, nπ /), n Z r t points of inflion. B sustitution, points of inflion (nπ /, nπ /) oviousl li on. (c) From (), cos /,, +R, <, < cos < π,. O. -... nπ nπ ± cos, ± cos,. < cos < π nπ For + cos, nπ + cos, sin, ' ' > nπ + cos, nπ + cos r min. points ling on. nπ For cos, nπ cos, sin, ' ' < nπ nπ cos, cos + r m. points ling on +.

(d) (i) For >, tr is no m. nd min. points. 6 (ii) For <, T grp on t rigt wit.7 nd T grp on t rigt. T lins 6 wit. nd. 6 ± r lso drwn wit m. (in ollow dots) nd min. (in O π π π π O π π π π solid dots) sown. -. ( ). Wn,, trfor is vrticl smptot. lim ( ) lim m lim ( ) lim( m) lim ± lim ± lim ± lim ( ) ± ± ± r oliqu mptots. Lt (, k) point on t givn curv. Diffrntit t function, w v d d d d (, k) k Lt m t qution of tngnt wic psss troug t origin. k m k.() k But (, k) is on t curv, w v Solv () nd (), (, k) k, ± ( ).() nd t rquird tngnts r 9 7 ±,or () λ ( ) λ ( ) λ ( ) () () Sinc () is t givn curv nd in ordr tt λ ( ) s tr rl roots s in t grp on t rigt, < λ < /7, compring () nd (). It s tr roots ( -, /, /) if λ /7 nd s onl on root if λ dos not li twn ts limits. - - - - O - - - - 6

. t, t d d d 6t, 6t t d Lt t tngnt(s) to t curv pss troug givn point (, ) t( ). t, t is on tis tngnt. t t(t ) or t t.() () is cuic qution in t nd in gnrl s tr roots. Trfor in gnrl, tr tngnts to t curv pss troug givn point (, ). (i) Considr t function t t.() t t ±.() () s rl solution if >, in otr words, () s turning point(s) if >. Sinc t curv () cuts t -is onc if tr is no turning point nd trfor > is ncssr condition for t tr tngnts to rl. (ii) T cuic qution () s distinct rl roots if nd onl if 7 >, wic is t sufficint conditions for t tr tngnts to rl nd distinct. 6. cos t sin t, cos t sin t. 7. d cos t d [ cos t sin t], sin t[ cos t sin t], [ cos t sin t] d tn t d cos t sin t [ cos t sin t] ( cos t sin t) tn t Eqution of tngnt is givn : cos t sin t cos t sin t cos t sin t( cos t sin t) cos t sin t At, cos t sin t.() tn t cos t sin t cos t ( ) cos t sin t cos t sin t cos t sin t cos t sin t cos t cos t cos t cos cos t sin t t In itr css, Ar / π ( sin t) / or dos not li twn nd d d π / π/ ( cos t sin t) ( sin t) + 6 π, / cost π / π ( sint) t 6 + d d ( + ) ( + ) /. + T function s turning point if + s solution, tt is, [ ( cos t ) ]..... -. -. -. -. -. O..... -. -. -. -. - 7

Δ (-) ()() ( ) or. If, If -, ( + ) ( + ) ( ) ( + ) d ( ), tr is no sign cng out n point on t curv. d + ( ) d ( + ), tr is no sign cng out n point on t curv. d + ( ) In ot css, t function s no m. or min. For <, lt + ( - α) ( - β) α < β. d ( α)( β), nd tr r sign cngs out α nd β. d ( + ) In conclusion, s mimum or minimum vlu if <. Oviousl, + s no solution if Δ < or >. / - O 6 - - - O - - - O. (i) (ii), + d d ( ( + ), ( + ) ) / For t givn sttionr vlu w v : For ts vlus of,, + Wn is sligtl lss tn, <. Wn is sligtl grtr tn, >. (, /) is minimum point., ( ) /,,. d ( ) d ( + ) At t point (, k) on t curv, k,. T grdint from (, ) to (, k) is k/. k/ k / or k. Wn k,, - ( > ) or + ( < ) (rjctd) Wn /, k, (, k) (/, ) m Eq. of tngnt : ( /) or. k () wic s no root if k () < k < < k < - - - O if > if <. - -

9. ( ) f () ( + ) () () f '() ( + )( ) ( + ) () f ''() ( ) ( + ) Wn -,, trfor - is vrticl smptot. () f () ( ) lim lim ( + ) lim + m + ( ) ( ) ( + ) + c lim lim lim lim ( ) ( ) + + ( + ) + is n oliqu smptot of t grp f(). () (i) Wn -, f (), f () -9/6 <. (-, -.) is locl m. point., Wn, f () nd cngs sign cross t vlu, (, ) is point of inflion. (ii) Sustitut in (), ( )( + ) ( ), -/. 6, f() (c) is t t intrsction of t grp nd its oliqu smptot. (d) - - - O - - - - - - O - -. (i) if Countrmpl : f(). Tn f() f() if. But f () is not dfind t. if < (ii) f () f () Tru. Proof: f '() lim >, sinc f() f() nd r of t sm sign. (iii) Tru. Proof: f () > for ll f () f () f '( ξ) >, < ξ <, Mn Vlu Torm. f() > f() wnvr >. (iv) Tru. Proof: f () for ll f () f () f '( ξ), < ξ <, Mn Vlu Torm. f() f() wnvr >. 9