Characteristics of Active Devices

Similar documents
The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOSFET: Introduction

ECE 342 Electronic Circuits. 3. MOS Transistors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

The Devices: MOS Transistors

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

The Devices. Jan M. Rabaey

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Introduction and Background

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Metal-oxide-semiconductor field effect transistors (2 lectures)

Integrated Circuits & Systems

MOS Transistor Properties Review

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Device Models (PN Diode, MOSFET )

The Devices. Devices

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ECE 497 JS Lecture - 12 Device Technologies

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Microelectronics Main CMOS design rules & basic circuits

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Chapter 4 Field-Effect Transistors

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Device Models (PN Diode, MOSFET )

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

6.012 Electronic Devices and Circuits Spring 2005

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

MOS Transistor Theory

ECE315 / ECE515 Lecture-2 Date:

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOS Transistor I-V Characteristics and Parasitics

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

1. The MOS Transistor. Electrical Conduction in Solids

The Physical Structure (NMOS)

Lecture 12: MOSFET Devices

Decemb er 20, Final Exam

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

MOS Transistor Theory

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

VLSI Design and Simulation

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Microelectronics Part 1: Main CMOS circuits design rules

Chapter 13 Small-Signal Modeling and Linear Amplification

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

EKV MOS Transistor Modelling & RF Application

EE 560 MOS TRANSISTOR THEORY

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow

Section 12: Intro to Devices

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Lecture 4: CMOS Transistor Theory

VLSI Design I; A. Milenkovic 1

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

EE105 - Fall 2006 Microelectronic Devices and Circuits

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

EECS130 Integrated Circuit Devices

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 3: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory

University of Toronto. Final Exam

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

ECE 546 Lecture 11 MOS Amplifiers

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Practice 3: Semiconductors

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

EE5311- Digital IC Design

Figure 1: MOSFET symbols.

Electronic Devices and Circuits Lecture 14 - Linear Equivalent Circuits - Outline Announcements

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Transcription:

007/Oct/17 1

haracteristics of Active Devices Review of MOSFET Physics MOS ircuit Applications Review of JT Physics MOS Noise JT Noise

MS/RF Technology Roadmap MS MOS 1., 1.0, 0.8µm 0.60, 0.50µm 0.45, 0.35µm 0.5, 0.18µm M013 1.V/.5V MN90 (1 ) 1.0V/.5V RF MOS M05.5V/3.3V M018 1.8V/3.3V M013 1.V/.5V MN90 (1 ) 1.0V/.5V SiGe imos SG035 3.3V SG018 1.8/3.3V Available Technologies 003 004 005 Left edge of each box represents risk production schedule MiM is offered for M05 and below and SiGe technologies. 3

Technology Landscape 00 40G SiGe imos 10G Si imos F t (GHz) 100 80 60 DMA WLAN Si MOS 40 GSM 0 0.5.35.5.18.15.13.1 Technology (µm) 4

ross Section View 5

Review of MOSFET Physics ross Section View & Layout Process masks N-Well, Active region, Poly gate, P/N implant D S G Substrate Well ontact S G D ontact S G D N Poly P N N N P Poly P P N Well Metal 1 ontact Silicided Poly Unsilicided Poly Field Oxide Nwell Substrate 6

Review of MOSFET Physics MOS Operation Regions: ut-off region V <, = 0 GS V T Linear (triode) region V GS > V Saturation region D Subthreshold region T W V DS, VDS < VGS V T D = µ n; pox ( VGS VT ) VDS L 1 W VGS > VT, VDS > VGS VT ( ) D = µ n; pox VGS VT L Overdrive voltage: V V V OV hannel - length modulation : T T GS D T ( 1 ) 0 = λv DS ( Φ V Φ ) ody effect : V = V 0 γ F S F D 7

Review of MOSFET Physics VDS = ( VGS VT ) D Triode region Short - channel effects Active region ncreasing V GS V GS > V T ut - off region V DS 8

Review of MOSFET Physics MOS parasitic capacitances: G S D L D L D ov ov P N N cb P-substrate jsb gc x l jdb x d 9

10 Review of MOSFET Physics Parasitic capacitance vs. Dimension ) ( D ox gc L L W = j ox D ox ox ov x W WL t 7 0. = ε ) ( Si D d cb L L W x ε d l l jdb x x W x W ) ( jdb cb jdb jdb db cb jsb cb jsb jsb sb gc gb cb gc cb gc gb ov ov gc ov gd ov gc ov gc ov gs 3 0 0 3 Saturation Triode - off ut < <

Review of MOSFET Physics MOS small signal model G G gd D R ds R g ds S gs gmv gs ro g mb v bs S R s Dsb Rsb Rdb Ddb R d D sb db R b Low frequency model RF model 11

Review of MOSFET Physics Unit current gain frequency, ω T : in D Unit power gain frequency, ω max : in Z in Z in Z out Z out gnore ω T R d and R gd gm n saturation gnore and i gd R d, gs s : g m gs region R s, forward R ds, R db, current, ( ) Z r 1 jω Z gd gs ( ) jω L R b, etc.: in g gd gs ωt ω 1 gm 1 max gd rg gd out ncreasing g m gs r o, ω T W L VOV W L ω T V OV L : 1

Review of MOSFET Physics NMOS in Deep N-Well No body effect Need extra mask and process procedure Large area V DD Substrate ontact S G D V DD N Poly N-well P N N N-well Deep N-Well Metal 1 ontact Silicided Poly Unsilicided Poly Field Oxide Nwell Substrate 13

MOS ircuit Applications 14

MOS ircuit Applications 15

MOS ircuit Applications 16

Review of JT Physics Vertical NPN JT E E E E E P Poly N Poly N-Epi N N N-uried Layerl Metal 1 ontact P Poly NL Field Oxide Nwell Substrate 17

Review of JT Physics Lateral JT PNP NPN E E P N P N N P N P N N-well N-well N-well Deep N-Well Metal 1 ontact P implant NL Field Oxide Nwell Substrate 18

E.g. SiGe Lateral PNP JT Review of JT Physics P SiGe P type SiGe SiGe P DT N Deep N-Well N DT 19

JT Operation Regions Use NPN as an example: ut-off region < V E 0, = 0 Activeregion Review of JT Physics VE > 0, V > 0, = β = S exp q Transconductance g m = = kt VT Early effect = exp qv kt 1 V Saturation region V E > 0, V < 0, < β S ( qv kt ) E ( ) ( V ) E E A 0

Review of JT Physics reakdown region Saturation region Active region ncreasing V E V E > V E _ ON V A ut - off region V E 1

JT small signal model Review of JT Physics r µ r b r π π µ v π g m ro r c S r e E NPN model S

Review of JT Physics Unit current gain frequency, ω T : in D Unit power gain frequency, ω max : η kt x x dep ωt = ( je jc ) ( RE R ) jc q ν Dn ν sat Z out τ = 1 T τ e τ b τ π τ c π f = ω max T ωt 8π r b jc RE R r bi i R 1 in Z in Z in Z out i E Emitter ase ollecter x x dep i 3

4 Review of JT Physics 50 50 50 (nm) 50 50 50 ) m ( 60 (nm) 5.0 0.5 0.5 ) m (ff/ 0.5 0.5 0.5 ) m (ff/ 40 30 5 60 40 (nm) Assumptions : 53 4 88 64 106 94 (GHz) 3.8 3.0.5 1.8 1.7 1.5 0.35 0.35 0.1 0.1 / ) ( 0.15 0.15 0.15 1.3 1.3 1.0 1.6 0.8 0.9 0.5 0.45 0. Si SiGe GaAs total SL JE E T E E t E X R X W f V R µ µ µ τ τ τ τ Ω in ps. are constants time All is is (GaAs,SiGe) to is (Si) 4 to is sat sat p JE E SL n n n D X V X V W D W D W D W τ τ τ τ f T of GanP/GaAs HT, SiGe HT and Si JT

Review of JT Physics Scaling of Si/SiGe HTs with ase Thickness f T is dramatically affected by decreasing base width. f max is relatively unaffected by decreasing W. Koenig, 1996 5

Review of JT Physics Si vs. SiGe 6

Review of JT Physics Process Scaling Vertical scaling Lateral scaling Single poly E E N N Nwell P N N Single poly self-aligned N-uried Layerl E P Poly N Poly N-Epi N N Double poly N-uried Layerl 7

Review of JT Physics Similarity between JT and MOS process 8

Review of JT Physics Evolution of imos process 9

Noise Noise: Any random interference unrelated to the wanted signal Statistic results (Mean square) v n = v n Total power = (individual noise power) v n,1 v n,1 R L vn, RL Uncorrelated v n, R L P n, 1 = v n,1 R L P v n, n, = P n, 1 = Pn,1 Pn, RL 30

Noise Device Noises V n = 4kTR f n = 4kT gm, q, 3 n = Figure.6 (a) Thermal and (b) shot noise in devices. White noise source Pnoise flicker noise olored noise source P noise f (in Hz) V K WL 1 f, n = ox f (in Hz) 31

MOS Noise 3

MOS Noise 33

MOS Noise 34

MOS Noise 35

MOS Noise 36

JT Noise 37

JT Noise 38

JT Noise 39

JT Noise 40

41 Latch-up Semiconductor active devices have many parasitic structures, with excessive current flows between the power supply and GND. P1 P P N1 N1 N E E 1 = 1 = ( 1 ) α ( ) α 1 1 1 1 1 1 1 1 1 ) (1 ) ( O O E E E = = = α α O O E = = α α 1 ) when (, ) ( 1 ) (1 1 1 1 1 1 1 = = = = = α α α α α α O O O O urrent relation

Latch-up condition Latch-up 1. pnpn structure. connection from VDD to GND 3. α 1 α = 1 Latch-up Prevention Epitaxial Substrate Retrograde Well Deep Trench solation SO Guard Rings 4