Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Similar documents
Laser Trapping and Probing of Exotic Helium Isotopes. Peter Müller

Charge Radii of Light Isotopes from Helium to Boron

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF. stephan ettenauer for the TITAN collaboration

Global properties of atomic nuclei

Status of the Search for an EDM of 225 Ra

Global properties of atomic nuclei

Nuclear radii of unstable nuclei -neutron/proton skins and halos-

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Quantum Monte Carlo calculations of medium mass nuclei

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

NEW VALUE OF PROTON CHARGE rms RADIUS

Proton radius puzzle

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Quantum Monte Carlo calculations of neutron and nuclear matter

Determining α from Helium Fine Structure

From few-body to many-body systems

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

STORAGE RINGS FOR RADIO-ISOTOPE BEAMS

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Global properties of atomic nuclei

2. Hadronic Form Factors

Status of the PREX Experiment R n through PVeS at JLab

arxiv: v4 [nucl-ex] 5 Feb 2009

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Experimental Nuclear Physics: Part 2

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

Scattering Processes. General Consideration. Kinematics of electron scattering Fermi Golden Rule Rutherford scattering cross section

High-energy collision processes involving intense laser fields

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

On the helium-4 charge rms-radius. Ingo Sick

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Electromagentic Reactions and Structure of Light Nuclei

PREX Overview Extracting the Neutron Radius from 208 Pb

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

Progress towards a new precise microwave measurement of the 2S-2P Lamb shift in atomic hydrogen. Eric Hessels York University Toronto, Canada

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore

A Helium-3 polarimeter using electromagnetic interference. Nigel Buttimore

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings

Higher-order recoil corrections in Helium and Helium-like ions

E. Fermi: Notes on Thermodynamics and Statistics (1953))

The Nucleus. PHY 3101 D. Acosta

NPRE 446: Interaction of Radiation with Matter Homework Assignments

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

Measuring Form Factors and Structure Functions With CLAS

Directions toward the resolution of the proton charge radius puzzle

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI

FAIR. Reiner Krücken for the NUSTAR collaboration

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

arxiv: v2 [nucl-th] 26 Jan 2011

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

The Gamma Factory proposal for CERN

Fine and hyperfine structure of helium atom

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

Nucleon-transfer reactions with light exotic nuclei

Physics at Hadron Colliders Partons and PDFs

Elastic Scattering of Protons with RI Beams

Measurements of liquid xenon s response to low-energy particle interactions

Local chiral NN potentials and the structure of light nuclei

A natural solution of the proton charge radius puzzle.

Studying Nuclear Structure

The Nuclear Many-Body problem. Lecture 3

Proton charge radius puzzle

ATOMIC PARITY VIOLATION

13. Basic Nuclear Properties

Introduction to Quantum Chromodynamics (QCD)

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Parity-Violating Asymmetry for 208 Pb

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

Coherent and incoherent nuclear pion photoproduction

Mass measurements of n-rich nuclei with A~70-150

Ro-vibrational spectroscopy of the hydrogen molecular ion and antiprotonic helium

Lamb shift in muonic hydrogen and the proton charge radius puzzle

New Frontiers in Nuclear Structure Theory

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius

Photopion photoproduction and neutron radii

Collinear laser spectroscopy of radioactive isotopes at IGISOL 4 Liam Vormawah

Introduction to Modern Physics Problems from previous Exams 3

Chapter 6. Isospin dependence of the Microscopic Optical potential for Neutron rich isotopes of Ni, Sn and Zr.

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

Isotope shift measurements of 11,9,7 Be +

Nuclear structure I: Introduction and nuclear interactions

Shell Eects in Atomic Nuclei

Physics of neutron-rich nuclei

Structure of Atomic Nuclei. Anthony W. Thomas

PHY397K - NUCLEAR PHYSICS - 2

arxiv: v2 [hep-ex] 12 Feb 2014

Transcription:

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics

Helium Atom fm Å e - Ionization Energy of Helium Atom Level 2 3 S 1 Calculation 1 152 842 741 ± 6 MHz Experiment 1 152 842 743 MHz Gordon Drake, Phys. Scripta (1999) 2

Effective Model of Nuclear Interaction Two-body potential: Argonne V18 H = i K i + i < j v γ ij + v π ij + v R ij EM 1-π short-range Coupling parameters fit to NN scattering data Problem: binding energy of most light nuclei too small q q Meson QCD exchange N q π q N q q Three-body potential: Illinois-2 V = V + V + ijk 2π 3π ijk ijk V R ijk Coupling parameters fit to energy levels of light nuclei Pieper & Wiringa. Ann. Rev. Nucl. Part. Sci. (2001) 3

Quantum Monte Carlo Calculations of Light Nuclei Pieper & Wiringa. Ann. Rev. Nucl. Part. Sci. (2001) 4

Halo Nuclei 6 He and 8 He Isotope Half-life Spin Isospin Core + Valence He-6 807 ms 0 + 1 α + 2n He-8 119 ms 0 + 2 α +4n Quantum Monte Carlo calculation 4 He 6 He 8 He Borromean Nucleus Borromean Rings Neutron Proton 5

Hadronic Probe: Scattering of 6 He & 8 He Beams 18 O 9 Be 6 He 1 12 HC 6 He 6 He θ Tanihata et al, Phys Lett (1985) LBNL Alkhazov et al, Nucl Phys (2002) GSI Elastic and inelastic collision: He on C, B Elastic collision: He on H, 700 MeV/u Matter distribution, matter radii 6

E&M Probe of Nuclear Charge Distribution dσ dσ 4 dω dω He electron θ 2 2 ( ) exp = ( ) Mott F( q ) 1 F q = q < r > + q 2 2 2 ( ) 1 charg e 6 mean-square radius root-mean-square radius ( ) < >= r 2 ρ r r 2 dv 2 < r > 4 He rms charge radius = 1.676 (8) fm [I. Sick Phys Lett B (1982)] Proton rms charge radius = 0.895(18) fm [I. Sick Phys Lett B (2003)] 7

Atomic Energy Levels of Helium He energy level diagram Cooling & Trapping at 1083 nm 3 3 P 0,1,2 100 ns 1.6 MHz Single photon kick k 01 0.1 m/s Transition rate ~ 4 x 10 6 /s 389 nm Acceleration ~ 4 x 10 5 m/s 2 100 ns 2 3 P 0,1,2 Spectroscopy at 389 nm 1083 nm Single photon kick 0.3 m/s 2 3 S 1 Doppler shift 400 khz 19.82 ev 1 1 S 0 8

Atomic Isotope Shift Isotope Shift δν = δν MS + δν FS Mass shift: due to nucleus recoil δν MS m e me 1 m e 1+ M N m M e N Field shift: due to nucleus size δν FS Ζ Δ[Ψ(0)] 2 <r 2 > 9

Field (Volume) Shift E δν FS = 2π Ze 3 r 2 Δ Ψ(0) 2 δ r 2 AA s p V ~ - 1/r Isotope Shift, G Hz 100 10 1 0.1 0.01 1E-3 1 10 100 Atomic number, Z 10

Atomic Theory of Helium Drake, Can. J. Phys (2006); Pachucki & Sapirstein, J Phys B (2002) 3 P J Non-relativistic wave functions from variational calculations Perturbation theory for relativistic corrections, QED, finite nuclear mass and nuclear charge radius QED terms cancel in isotope shift 3 S 1 For 2 3 S 1 3 3 P 2 transition @ 389 nm: 6 He - 4 He : δν 6,4 = 43196.207(15) MHz + 1.008 (<r 2 > He4 -<r 2 > He6 ) MHz/fm 2 8 He - 4 He : δν 8,4 = 64702.409(74) MHz + 1.008 (<r 2 > He4 -<r 2 > He8 ) MHz/fm 2 8,4 He4 He8 100 khz error in IS ~ 1% error in radius 11

Laser Cooling and Trapping Technical challenges: Short lifetime, small samples (<10 6 atoms/s available) Metastable efficiency ~ 10-5 Precision requirement (~100 khz) Magneto-Optical Trap (MOT) Cooling: Temperature~ 1 mk, avoid Doppler shift / width Long observation time: 100 ms Spatial confinement: trap size < 1 mm single atom sensitivity Selectivity: no isotopic / isobaric interference 12

8 He: The Most Neutron-Rich Nucleus # of protons # of neutrons 13

He-8 @ GANIL 75 MeV/u, 0.4 pμa 13 C beam on 12 C target 14

8 He @ GANIL by Antonio Villari et al. He-8: 5 x 10 5 s -1 Salle D2 ECR Ion Source 1 GeV, 400 pna 13 C He-6: 1 x 10 8 s -1 Mass separator 8 He + @ 20 kev 8 He thermal 5 m 1.65 MOT 2.15 3.15 0.75 1.85 Laser System 15

Atom Trapping of 6 He & 8 He at GANIL ~1x10 86 He + /s ~5x10 58 He + /s Xe Atom Trap Setup Transverse cooling Zeeman slower 389 nm MOT 1083 nm He level scheme 3 3 P 2 Spectroscopy 389 nm 2 3 P 2 Trap 1083 nm 2 3 S 1 1 1 S 0 RF - Discharge 1.2 One trapped 6 He atom PMT Source Capture efficiency Trap 6 He ~ 5x10 7 /s 1x10-7 6 He ~ 5 /s 8 He ~ 1x1010 5 /s 8 He ~ 1x1010-2 /s Photon countrate e/ khz 1.0 0.8 0.6 0.4 02 0.2 0.0 0 5 10 15 20 Time (s) 16

He-8 Trapped! Count ts per Channe el 500 400 300 200 100 First He-8 8Atom June 15 th 2007 f 6 He 8 He t 50 khz s per Channe el Count 100 80 60 40 20 110 khz 60 atoms 0 0-10 -8-6 -4-2 0 2 4 6 8 10-10 -8-6 -4-2 0 2 4 6 8 10 Rel. Laser Frequency, MHz Rel. Laser Frequency, MHz ~30 6 He atoms/s ~30 8 He atoms/hr 17

Laser Setup - 389 nm (778 nm) Diode Laser 1 @ 778 nm Lock to I 2 Measure beat frequency Diode Laser 2 @ 778 nm Tapered Amplifier 3 He I 2 2 4 He 6 He Frequency doubling (LBO) 2mW @ 389 nm -44.6-2.5 0 40.6 2 3 S 1-3 3 P 2 Frequency (GHz) 18

3 1 P 1 3 3 P 0,1,2 389 nm J=1 J=0 J=1 J=2 2 3 S 1 J=1 Isotope Shift and Field Shift : J - Dependence? MHz 8,4-64701, δν 8 194, MHz δν 6,4-43 0.8 0.6 0.4 0.2 0.0-0.2 0.9 0.7 (a) (b) 8 He 6 He Field Shift, MHz -0.6-0.8-1.0 0.8-1.2 0.6 0.5-1.4 04 0.4-1.6 16 J = 0 J = 1 J = 2 (c) 6 He 8 He J = 0 J = 1 J = 2 Wang 04 Argonne 19

6 He & 8 He Charge Radii 6 He 8 He Field Shift, MHz -1.464(34) -0.916(95) RMS R CH, fm 2.068(11) 1.929(26) Total Uncertainty 0.5 % 1.3 % - Statistical 0.1 % 0.6 % - Trap Systematics 0.3 % 0.6 % - Mass Systematics 0.2 % 1.0 % - He-4: 1.676(8) fm 0.3 % 0.4 % Recoil Correction E = γ E + int P 2 γ 2M atom 20

Charge Radius vs. Point-Proton Radius r c R p Experiment: mean square charge radius <r c2 > Theory: mean square point-proton radius <r p2 > r p R n Z<r c2 > = Z<r p2 > + Z(<R p2 >+0.75/M p2 ) + N<R n2 > Mean square charge radii of nucleons: Neutron <R n2 > = - 0.116(2) fm 2 Proton <R p2 > = 0.769(12) fm 2 (I. Sick) Darwin-Foldy 0.75/M p2 = 0.033 fm 2 (J. Friar) 21

6 He & 8 He RMS Point Proton and Matter Radii Wang et al., PRL (2004) Mueller et al., PRL (2007) 22

He-6 Collaboration P. Mueller, L.-B. Wang, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang - Physics, Argonne G. W. F. Drake - Univ of Windsor, Canada He-8 Collaboration P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai - Physics, Argonne; M.- G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari - GANIL, Caen, France G. W. F. Drake - Univ of Windsor, Canada L.-B. Wang Los Alamos Lab 23