Tables. For. Organic Structure Analysis

Similar documents
Tables. For. Organic Structure Analysis

Nuclear Spin States. NMR Phenomenon. NMR Instrumentation. NMR Active Nuclei. Nuclear Magnetic Resonance

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Tuesday, January 13, NMR Spectroscopy

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared Characteristic Group Frequencies

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

To Do s. Answer Keys are available in CHB204H

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

To Do s. Answer Keys are available in CHB204H

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Introduction to NMR spectroscopy

Chapter 16 Nuclear Magnetic Resonance Spectroscopy

Nuclear spin and the splitting of energy levels in a magnetic field

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

All Classes of Organic Compounds

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

CH 320/328 N Summer II 2018

General Infrared Absorption Ranges of Various Functional Groups

Chapter 9. Organic Chemistry: The Infinite Variety of Carbon Compounds. Organic Chemistry

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

1. LiAlH4 :.. :.. 2. H3O +

Ferdowsi University of Mashhad

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

22 and Applications of 13 C NMR

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

Spectroscopy in Inorganic Chemistry. Electronic Absorption Spectroscopy

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

PHARMACEUTICAL CHEMISTRY EXAM #1 Februrary 21, 2008

Organic Chemistry 1 CHM 2210 Exam 4 (December 10, 2001)

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

+ + CH 11: Substitution and Elimination Substitution reactions

Exam I 19 April 2004 Name:

Q.8. Isomers are the compounds that must have same

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chemistry 343- Spring 2008

Infrared Spectroscopy

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

1. What is the major organic product obtained from the following sequence of reactions?

Massachusetts Institute of Technology Organic Chemistry Hour Exam #1. Name. Official Recitation Instructor

Welcome to C341!! Chapter 1 & 2: Review of General Chemistry

Aromatic Hydrocarbons

1. Which compound would you expect to have the lowest boiling point? A) NH 2 B) NH 2

CHEM 322 Laboratory Methods in Organic Chemistry. Introduction to NMR Spectroscopy

C h a p t e r S i x t e e n: Nuclear Magnetic Resonance Spectroscopy. An 1 H NMR FID of ethanol

1 st -order spin-spin coupling. 2 nd -order spin-spin coupling. ν/j < 10

CHEMISTRY 263 HOME WORK

CH 3. mirror plane. CH c d

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

Nuclear Magnetic Resonance Spectroscopy: Purpose: Connectivity, Map of C-H framework

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H

Spin-Spin Coupling. H b1 H 3 C C Br. Review: 1 H- 1 H Coupling

IR, MS, UV, NMR SPECTROSCOPY

θ-1) B z dθ = 0 r 3 θ=0

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Chapter 13: Molecular Spectroscopy

Infrared Spectroscopy: How to use the 5 zone approach to identify functional groups

Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp 2 Zr(H)Cl: Scope and Mechanistic Insight

MASS SPECTROMETRY: BASIC EXPERIMENT

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols.

ACETONE. PRODUCT IDENTIFICATION CAS NO EINECS NO MOL WT H.S. CODE Oral rat LD50: 5800 mg/kg

1.1. IR is part of electromagnetic spectrum between visible and microwave

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

Basic One- and Two-Dimensional NMR Spectroscopy

CARBOXYLIC ACIDS AND THEIR DERIVATIVES. 3. Predict the relative acidity and basicity of compounds and ions. Important criteria include:

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1

Chapter 24 From Petroleum to Pharmaceuticals

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

Chapter 17: Alcohols and Phenols

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Module 13: Chemical Shift and Its Measurement

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSION A

Can First Year Organic Students Solve Complicated Organic Structures?

Learning Guide for Chapter 14 - Alcohols (I)

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

Learning Guide for Chapter 3 - Infrared Spectroscopy

Lecture 2. The framework to build materials and understand properties

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

CHEMISTRY 341. Final Exam Tuesday, December 16, Problem 1 15 pts Problem 9 8 pts. Problem 2 5 pts Problem pts

Properties of Amines

ALCOHOLS AND PHENOLS

Chapter 14 Spectroscopy

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2)

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Chapter 22: Amines. Organic derivatives of ammonia, NH 3. Nitrogen atom have a lone pair of electrons, making the amine both basic and nucleophilic

Alkanes 3/27/17. Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means fat ) - Open chain Aromatic - ring. Alkane Alkene Alkyne

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

KOT 222 Organic Chemistry II

Alkanes, Alkenes and Alkynes

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Other problems to work: 3-Chloropentane (diastereotopic H s), 1- chloropentane.

Transcription:

Tables For Organic Structure Analysis

Magnetic properties of commonly studied species. Nucleus Natural abundance (%) Approximate sensitivity at constant Bo for natural abundance 1 Resonance frequency at 2.35 T (100 Mz) Relative magnetic moment ( ) Relative quadrupole moment (Q) I = 1/2 [2] *1 99.98 1.0 100.0 1.0 3 0.0 106.7 1.07 *13C 1.1 1.8 x 10-4 25.3 0.25 15N a 0.4 3.8 x 10-6 10.1-0.10 *19F 100.0 0.83 94.1 0.94 29Si a 4.7 3.6 x 10-3 19.9-0.20 *31P 100.0 0.07 40.5 0.41 Free electrona 65,820.0-657.4 I = 0 [0] 12C 98.9 16O 99.9 28Si 92.3 30Si 3.1 32S 94.8 34S 4.4 I = 1 [3] 2 0.02 1.5 x 10-6 15.4 0.31 0.17 14N 99.6 1.0 x 10-3 7.2 0.14 1.0 I = 3/2 [4] 11B 80.4 0.13 32.1 0.96 2.2 23Na 100.0 0.09 26.5 0.79 9.3 33S 0.8 1.7 x 10-5 7.7 0.23-4.0 35Cl 75.5 3.6 x 10-3 9.8 0.23 5.0 37Cl 24.5 6.7 x 10-4 8.2 0.25-4.0 79Br 50.5 0.04 25.1 0.75 20.7 81Br 49.5 0.05 27.0 0.81 17.6 I = 5/2 [6] 17O a 0.04 1.1 x 10-5 13.5-0.68-1.6 127I 100.0 0.09 20.0 1.00 37.5 I = 3 [7] 10B 19.7 3.7 x 10-3 10.7 0.64 4.6 [ ] Number of energy levels. a Negative magnetic moment. * Most useful. 1 Data from Bruker Almanac adjusted for natural abundance

Some useful NMR solvents Solvent 1 (ppm) (mult.) 13C (ppm) (mult.) 179.0 (1) 20.0 (7) Liquid Range ( C) Dielectric Constant OD (ppm) in 1 NMR Acetic Acid-d4 11.65 (1) 2.04 (5) 17 118 6.1 11.6 Acetone-d6 2.05 (5) 206.7 (13) -94 57 20.7 2.0 29.9 (7) Acetonitrile-d3 1.94 (5) 118.7 (1) -45 82 37.5 2.1 1.4 (7) Benzene-d6 7.16 (1) 128.4 (3) 5 80 2.3 0.4 Chloroform-d 7.27 (1) 77.2 (3) -64 62 4.8 1.5 Cyclohexane-d12 1.38 (1) 26.4 (5) 6 81 2.0 D2O 4.80 4 101 78.5 4.8 Dichloromethane-d2 5.32 (3) 54.0 (5) -95 40 8.9 1.5 p-dioxane-d8 3.53 (m) 66.7 (5) 12 101 2.2 2.4 DMF-d7 8.03 (1) 2.92 (5) 2.75 (5) 163.2 (3) 34.9 (7) 29.8 (7) -61 153 36.7 3.5 DMSO-d6 2.50 (5) 39.5 (7) 18 189 46.7 3.3 Methanol-d4 4.87 (1) 49.2 (7) -98 65 32.7 5.0 3.31 (5) Pyridine-d5 8.74 (1) 7.58 (1) 7.22 (1) 150.4 (3) 135.9 (3) 123.9 (5) -42 116 12.4 5.0 TF-d8 3.58 (1) 1.73 (1) Toluene-d8 7.09 (m) 7.00 (1) 6.98 (m) 2.09 (5) 67.6 (5) 25.4 (1) 137.9 (1) 129.2 (3) 128.3 (3) 125.5 (3) 20.4 (7) TFA-d 11.50 (1) 164.2 (4) 116.6 (4) -109 66 7.6 2.5-95 111 2.4 0.4-15 72 39.5 11.5

1 NMR shifts of common impurities in various solvents ( ppm (mult)) Impurity Chloroform-d DMSO-d6 Pyridine-d5 Benzene-d6 D2O Acetic Acid 2.13 (s) 1.95 (s) 2.13 (s) 1.63 (s) 2.16 (s) Acetone 2.17 (s) 2.12 (s) 2.00 (s) 1.62 (s) 2.22 (s) Acetonitrile 1.98 (s) 2.09 (s) 1.85 (s) 0.67 (s) 2.05 (s) Benzene 7.37 (s) 7.40 (s) 7.33 (s) 7.30 (s) 7.44 (s) t-butanol 1.28 (s) 1.14 (s) 1.37 (s) 1.06 (s) 1.23 (s) Chloroform 7.27 (s) 8.35 (s) 8.41 (s) 6.41 (s) ns Cyclohexane 1.43 (s) 1.42 (s) 1.38 (s) 1.40 (s) ns Dichloromethane 5.30 (s) 5.79 (s) 5.62 (s) 4.46 (s) ns Diethyl Ether 3.48 (q) 3.42 (q) 3.38 (q) 3.27 (q) 3.56 (q) 1.20 (t) 1.13 (t) 1.12 (t) 1.10 (t) 1.17 (t) DMF 8.01 (s) 7.98 (s) 7.91 (s) 2.95 (s) 2.92 (s) 2.72 (s) 2.40 (s) 3.00 (s) 2.88 (s) 2.76 (s) 2.66 (s) 1.98 (s) 2.86 (s) DMSO 2.62 (s) 2.52 (s) 2.49 (s) 1.91 (s) 2.70 (s) p-dioxane 3.70 (s) 3.61 (s) 3.61 (s) 3.38 (s) 3.75 (s) Ethanol 3.72 (q) 3.49 (q) 3.86 (q) 3.39 (q) 3.64 (q) 1.24 (t) 1.09 (t) 1.29 (t) 0. 97 (t) 1.16 (t) Ethyl Acetate 4.12 (q) 4.08 (q) 4.06 (q) 3.91 (q) 4.14 (q) 2.04 (s) 2.02 (s) 1.94 (s) 1.68 (s) 2.08 (s) 1.25 (t) 1.21 (t) 1.10 (t) 0.94 (t) 1.23 (t) Methanol 3.48 (s) 3.20 (s) 3.57 (s) 3.09 (s) 3.35 (s) Petroleum Ether 1.28 (bs) 1.28 (bs) 1.20 (bs) 1.22 (s) ns 0.90 (t) 0.89 (t) 0.86 (t) 0.89 (t) i-propanol 4.03 (m) 4.16 (m) 3.76 (m) 1.22 (d) 1.06 (d) 1.29 (d) 1.01 (d) 1.18 (d) n-propanol 3.60 (t) 3.75 (t) 3.76 (t) 3.61 (t) 1.60 (m) 1.45 (m) 1.70 (m) 1.40 (m) 1.57 (m) 0.93 (t) 0.87 (t) 0.97 (t) 0.80 (t) 0.89 (t) Pyridine 8.60 (m) 8.61 (m) 8.71 (m) 8.50 (m) 8.50 (m) 7.69 (m) 7.83 (m) 7.58 (m) 7.05 (m) 7.90 (m) 7.28 (m) 7.21 (m) 7.21 (m) 6.70 (m) 7.47 (m) TF 3.74 (m) 3.63 (m) 3.67 (m) 3.01 (m) 3.75 (m) 1.85 (m) 1.78 (m) 1.64 (m) 0.87 (m) 1.88 (m) Toluene 7.19 (m) 7.22 (m) 7.22 (m) 7.10 (m) ns 2.34 (s) 2.32 (s) 2.22 (s) 2.13 (s) Triethylamine 2.56 (q) 2.47 (q) 2.43 (q) 2.40 (q) 2.59 (q) 1.03 (t) 0.99 (t) 0.96 (t) 0.95 (t) 1.02 (t) ns=not soluble From: J. Org. Chem. 1997, 62, 7512-7515

1 NMR Chemical Shifts in Organic Compounds ppm 12 11 10 9 8 7 6 5 4 3 2 1 0-1 Phenol -O Alcohols-O Thiols-S Amines-N 2 Amides Carboxylic acids-o Aldehydes eteroaromatics Aromatics Alkenes Alcohols, alogens Amines R-N 2 Alkynes Methyl groups (R-Me) Methylenes (-C 2 -) Cyclopropyl Metals (M-C 3 ) ppm Relative to TMS (0 ppm) O RCONR N Z=O, N, S O 2 C - CO- Z Z R RCON 2 R O R N 2 N M-C 3 12 11 10 9 8 7 6 5 4 3 2 1 0-1 Z -C 2 -O- ó- C 2 -X Z=O, N, S S R RC=CR 2 2 C=CR 2 -C-O- ó -C-X Ph-C 2 - -CO-C 2 - -C-N- ó -C 2 -N C C C 3 -O- C 3 -N R-C 2 -R C 3 -S- C 3 -Ph O C 3 -C-X C 3 -CO- C 3 -C=C- -C 2 -C=C- 2 C

13 C NMR Chemical Shifts in Organic Compounds sp 2 sp sp 3 4 o 3 o 2 o 1 o ppm 230 C=O Ketone C=O Aldehyde C=O Acid C=O Ester, Amide C=S Thioketone C=N - Azomethine C=N - eteroaromatic C=C Alkene C=C Aromatic C=C eteroaromatic C C Alkyne C N Nitrile C Quat. C-O- C-N- C-S C-X C-C C-O- alogen (C Tertiary) C-N- C-S- C-X alogen C 2 -C (C Secondary) C 2 -O- C 2 -N- C 2 -S- C 2 -X alogen C 3 -C (C Primary) C 3 -O- C 3 -N- C 3 -S- C 3 -X alogen ppm 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Cyclopropanes Epoxides 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 *Relative to TMS (0 ppm) 4 o Quaternary, 3 o Tertiary, 2 o Secondary, 1 o Primary

15 N NMR Chemical Shifts in Organic Compounds ppm 1000 900 800 700 600 500 400 300 200 100 0 Aliphatic amine Secondary Primary Tertiary Amonium salt Secondary Primary Tertiary Dimethyleneamine Anilinium ion Aniline Piperidine Cyclic enamine Aminophosphine Guanidine Urea, carbamate, lactame Imine Amine Amide Primary Tertiary Secondary Thiourea Thioamide Nitramine NO 2 N Indole, pyrrole idrazone, triazene Amine N=N-N Imine Imide Nitrile, isonitrile Iso Pyrrazole Diazocompound Diazonium salt Pyridine Terminal Internal Pyridine Imidazole Imine Pyrazine Pyrimidine Oxime Nitrocompound Nitrosocompound Ar-NO S-NO N-NO ppm *Nitrometane as reference (380 ppm) 1000 900 800 700 600 500 400 300 200 100 0

31 P NMR Chemical Shifts in Organic Compounds ppm 700 600 500 400 300 200 100 0-100 -200-300 Z-P=P-Z Z 2 N-P=NR ArP=C=Z 2 ArP=C=Ar ArP=C=Ar 2 ArP=C=O X=P(Y)=Z Z 3 P (TMS) 3 P Cl 3 P (RO) 3 P (Ar) 3 P (Me) 3 P 3 P Z-C P TMS-C P R-C P FC P R 3 -P-R R 2 P-PR 2 Z 3 P=O R 3 P=CR 2 Z 5 P R 2 P - M + Z 6 P - R(OR) 2 P=O Cl(OR) 2 P=O (OR) 5 P R 3 P=O RO 3 P=O Cl 2 RP=O R 2 (OR) 3 P R 4 P ppm 700 600 500 400 300 200 100 0-100 -200-300 *Reference 3 PO 4 85%. Adapted from A Complete Introduction to Modern NMR Spectroscopy. R. S. Macomber. J. Wiley and Sons. 1998.

Symmetry Effects for omotopic; Enantiotopic, and Diasterotopic Groups GROUP A/B Relationships Methylenes Example Appearance 1 RMN Achiral solvent Appearance 1 RMN Chiral solvent omotopic Enantiotopic a Ph C b O 4.02 4.00 3.98 3.96 3.94 3.92 3.90 3.88 ppm 4.02 4.00 3.98 3.96 3.94 3.92 3.90 3.88 ppm Diastereotopic a Ph C b G* 2.92 2.90 2.88 2.86 2.84 2.82 2.80 2.78 2.76 ppm 2.92 2.90 2.88 2.86 2.84 2.82 2.80 2.78 2.76 ppm 3.16 3.14 3.12 3.10 3.08 3.06 3.04 3.02 3.00 ppm 3.16 3.14 3.12 3.10 3.08 3.06 3.04 3.02 3.00 ppm Methyls omotopic Enantiotopic 1.85 1.80 1.75 1.70 1.65 1.60 1.55 ppm 1.85 1.80 1.75 1.70 1.65 1.60 1.55 ppm Diastereotopic 1.70 1.65 1.60 1.55 1.50 1.45 1.40 ppm 1.70 1.65 1.60 1.55 1.50 1.45 1.40 ppm 1.28 1.26 1.24 1.22 1.20 1.18ppm 1.28 1.26 1.24 1.22 1.20 1.18ppm

First-order Splitting Patterns of Some Common Spin Systems. Entry Structure Notation and Pattern for a Entry Structure a multiplets J ab =J ac d dd 1 7 b b' J ab > J ab' t t 2 8 ab > 0; b = b' J ab = J ab' t dd 3 9 J ac > J ab q dt 4 10 J ab >J ac q ddd 5 11 J ab >J ab' >J ac sp dq 6 12 J ab > J ac

Common Coupled Spin Systems Entry No. spins Spin Type J values by inspection Examples 1 2 AX 2 2 AB 3 3 AMX ABX ABC J AB and J (AX+BX) None 4 3 A 2 X 5 3 A 2 B 6 4 A 3 X A 3 B 7 4 AMX 2 X R 13 C 8 4 ABX 2 J AB rare ABCX None ABCD None 9 4 A 2 X 2 A 2 B 2 No 10 4 AA'XX' J AX when J AA' or J XX' is small No when large 11 4 AA'BB' No 12 5 A 3 X 2 A 3 B 2 13 5 A 3 MX A 3 XY J XY

Examples of Magnetic and Chemical Equivalence. Type 1 Group Symmetry Chemical Equivalence Magnetic Equivalence Spectral Type 1 Spectral Appearance C 2 Cl 2 omotopic A2 5.45 5.40 5.35 5.30 5.25 5.20ppm C 2 F 2 omotopic A 2 X 2 5.60 5.55 5.50 5.45 5.40 5.35 5.30 ppm omotopic A 2 5.96 5.94 5.92 5.90 5.88 5.86 5.84 ppm omotopic No AA'XX' 6.20 6.15 6.10 6.05 6.00 5.95 ppm omotopic A 4 7.26 7.24 7.22 7.20 7.18 7.16 7.14 ppm Two homotopic sets No AA'BB' 7.35 7.30 7.25 7.20 7.15 7.10 7.05 ppm omotopic vinyl s A 2 X 6.48 6.46 6.44 6.42 6.40 6.38 6.36 6.34 ppm Two homotopic sets No AA'BB' 6.6 6.5 6.4 6.3 6.2 6.1 6.0 ppm