Vector control of asymmetrical six-phase synchronous motor

Similar documents
MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

On a mixed interpolation with integral conditions at arbitrary nodes

Finding the strong defining hyperplanes of production possibility set with constant returns to scale using the linear independent vectors

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

Direct Torque Control of Three Phase Induction Motor FED with Three Leg Inverter Using Proportional Controller

Generalized Theory of Electrical Machines- A Review

ANALYSIS OF ELECTRIC MACHINERY AND DRIVE SYSTEMS

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink

Small Signal Stability Analysis of Six-phase Synchronous Generator

The plastic number and its generalized polynomial

A note on the unique solution of linear complementarity problem

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System

Matrix l-algebras over l-fields

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

Modelling and Parameter Determination of an Induction Servo-Motor

Graded fuzzy topological spaces

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction

Modelling of Closed Loop Speed Control for Pmsm Drive

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

A Power System Dynamic Simulation Program Using MATLAB/ Simulink

Steady State Modeling of Doubly Fed Induction Generator

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Some aspects on hesitant fuzzy soft set

Dynamic d-q Model of Induction Motor Using Simulink

Modeling and simulation aspects of AC machines

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation *

Derivation, f-derivation and generalized derivation of KUS-algebras

Position with Force Feedback Control of Manipulator Arm

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Non-linear unit root testing with arctangent trend: Simulation and applications in finance

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor

VECTOR CONTROL OF INDUCTION MOTOR WITH SPLIT PHASE STATOR WINDINGS. K T. Ranganathan E. E. Professor

Synchronous Machines

Digitization of Vector Control Algorithm Using FPGA

Modelling, Simulation and Nonlinear Control of Permanent Magnet Linear Synchronous Motor

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE

Synchronous Machines

SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Analysis of Field Oriented Control Strategy for Induction Motor

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

Nonlinear dynamic simulation model of switched reluctance linear machine

CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

Dynamic Behavior of Three phase Inductions Motors as Loads in an Electric Power System with Distributed Generation, a Case of Study.

Lesson 17: Synchronous Machines

Comparison Between Direct and Indirect Field Oriented Control of Induction Motor

Modelling and Simulating a Three-Phase Induction Motor

Response surface designs using the generalized variance inflation factors

Three phase induction motor using direct torque control by Matlab Simulink

AC Induction Motor Stator Resistance Estimation Algorithm

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Sensorless Sliding Mode Control of Induction Motor Drives

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER

Petrović s inequality on coordinates and related results

Dynamics of the synchronous machine

Anakapalli Andhra Pradesh, India I. INTRODUCTION

The Enlarged d-q Model of Induction Motor with the Iron Loss and Saturation Effect of Magnetizing and Leakage Inductance

Implementation of Twelve-Sector based Direct Torque Control for Induction motor

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM

Offline Parameter Identification of an Induction Machine Supplied by Impressed Stator Voltages

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Introduction to Synchronous. Machines. Kevin Gaughan

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Computer Aided Power Control for Wound Rotor Induction Generator

Chapter 4. Synchronous Generators. Basic Topology

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Speed Control of Induction Motor Drives using Nonlinear Adaptive Controller

Modeling and Simulation of Flux-Optimized Induction Motor Drive

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

Loss analysis of a 1 MW class HTS synchronous motor

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

Transcription:

Iqbal et al., Cogent Engineering (216, 3: 11344 ELECTRICAL & ELECTRONIC ENGINEERING RESEARCH ARTICLE Vector control of asymmetrical six-phase synchronous motor Arif Iqbal 1 *, G.K. Singh 1 and Vinay Pant 1 Received: 22 October 215 Accepted: 9 December 215 First Published: 19 January 216 *Corresponding author: Arif Iqbal, Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India E-mails: arif.iqbal.in@gmail.com, arif548@gmail.com Reviewing editor: Wei Meng, Wuhan University of Technology, China Additional information is available at the end of the article Abstract: Vector control scheme has been well adopted for higher performance applications of AC motor. Therefore, this paper presents an extensive development and investigation of vector control scheme for asymmetrical six-phase synchronous motor in a new two-axis (M T coordinate system. Phasor diagram has also been developed in a simplified way, followed by its implementation technique. Analytical results have been presented for four-quadrant operation of synchronous motor, employing the developed vector control scheme. In analytical control model, common mutual leakage reactance between the two winding sets occupying same stator slot has been considered. Subjects: Automation Control; Mechatronics; Systems & Controls Keywords: six-phase synchronous motor; vector control; motor drive 1. Introduction The multiphase (more than three phase AC motor drives are used as a substitute of conventional three-phase motor in different applications particularly, in propulsion system of ship and vehicle, textile and steel industries, rolling mills, power plants, etc. This is because it offers certain potential advantages when compared with its three-phase counterpart, like reduction in space and time harmonics, reduced torque pulsation, increased power handling capability, higher reliability, etc. (Levi, 28; Singh, 22. Field-oriented control (i.e. vector control technique has been widely used in high performance of AC motor drives. In this regard, an abundant number of literatures are available for three-phase motor (Bose, 22; Das & Chattopadhyay, 1997; Jain & Ranganathan, 211; Krause, Wasynczuk, & Sudhoff, 24, but a few for six-phase induction motor (Bojoi, Lazzari, Profumo, & Tenconi, 23; Singh, Nam, & Lim, 25, wherein d q model of machine has been used in synchronously rotating Arif Iqbal ABOUT THE AUTHOR Arif Iqbal received his BTech and MTech degrees both in electrical engineering in 25 and 27, respectively, from Aligarh Muslim University, Aligarh, India. After having experience in industry and teaching in the field AC drives and power system for a few years, he is currently pursuing his PhD from Indian Institute of Technology Roorkee, India. His area of interest is multiphase AC machine and drives, power electronics, and renewable energy system. PUBLIC INTEREST STATEMENT It is always advantageous to use the electrical machine with its performance at higher level using a suitable technique. Among different techniques, vector control is widely used as it provides the decoupled control of torque and flux component of machine current. Therefore, the paper explores a detailed asymmetrical six-phase synchronous motor operation employing this technique. Analysis and simulation of complete drive system has been carried out in Matlab/ Simulink environment, where dynamic behavior of motor was found to be substantially improved. It is believed that the paper will serve as a source toward higher performance of six-phase synchronous motor. 216 The Author(s. This open access article is distributed under a Creative Commons Attribution (CC-BY 4. license. Page 1 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 reference frame. But the utilization of this scheme has not been reported for field excited six-phase synchronous motor. Therefore, the paper is dedicated to explore and develop the control technique for asymmetrical six-phase synchronous motor. In the control scheme, a new two axis (M T coordinate has been introduced along which the decoupled control of flux and torque is achieved. Following the inclusion of control technique, a detailed analytical results have been presented for motor operation in four quadrants. 2. Mathematical modeling For the purpose of realizing the six-phase motor, it is a common practice to split the existing threephase stator winding into two, namely a b c and a b c. Both splitted stator winding sets (a b c and a b c are physically displaced 3 apart to realize asymmetrical six-phase winding configuration. Asymmetrical six-phase winding configuration yields the reduced torque pulsation (Singh, 22, 211 due to the elimination of lower order harmonics. On the rotor side, it is equipped with field winding fr together with the damper windings K d and K q along d and q-axis, respectively. The equation of the motor can be written using machine variables. But this will yield a set of nonlinear differential equations. Nonlinearity is due to the existence of inductance term which is time varying in nature. Such equations are computationally complex and time-consuming. Therefore, to simplify the motor equations with constant inductance term, it will be conveniently written in rotor reference frame using Park s variables (Iqbal, Singh, & Pant, 214, in press; Schiferl & Ong, 1983; Singh, 211. v dqk r sk i dqk + ω r ω b ψ dqk + p ω b ψ dqk (1 v dqr r dqr i dqk + p ω b ψ dqr (2 v dqk v dk v qk (3 ψ dqk ψ dk ψ qk (4 r dqk r dk r qk (5 for k { 1, for winding set abc 2, for winding set a b c v dqr v Kd v Kq v fr (6 r fr v fr e xfd 3, 12] x md (7 ψ dqr ψ Kd ψ Kq ψ fr (8 r dqk r Kd r Kq r fr (9 Equations of motor flux linkage per second may be conveniently written as the function of currents, ψ xi (1 Page 2 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 where i i dqk i dqk, ψ ψ dqk ψ dqk x is defined in Appendix 1. The developed motor torque is expressed as τ e τ e1 + τ e2 (11 where τ e1 and τ e2 are the developed motor torque associated with winding sets a b c and a b c, respectively, and expressed as τ e1 c(i q1 ψ d1 i d1 ψ q1 (12 τ e2 c(i q2 ψ d2 i d2 ψ q2 (13 with c 3 P 2 2 1 ω b The rotor dynamics having P number of poles is expressed as ω r 1 1 P 1 ( ] τe τ ω b p ω b 2 J l (14 wherein, τ l is the load torque, p represents the derivative function w.r.t. time and all symbols stand to their usual meaning (Iqbal et al., in press. Evaluation of motor parameters is determined from the standard test procedure (Aghamohammadi & Pourgholi, 28; Alger, 197; Jones, 1967. 3. Vector control scheme The operating performance of vector-controlled motor is greatly improved and similar to that of a separately excited DC motor (Bose, 22. This is because of decoupled control of both flux component and torque component of stator current. The inclusion of vector control scheme is not similar to that of induction motor drive. The main difference lies on the fact that the air gap flux is attributed by both stator flux as well as field flux. Therefore, the resultant air gap flux will align along the axis which is different from conventional d-axis. Hence, a new (M T coordinate axis has been introduced wherein, the resultant flux vector and torque current component will align along M and T axis, respectively. Machine variables in newly defined coordinate axis (M T axis may be readily transformed to its equivalent d q or vice versa by relation ] ] ] Mk cosδk sinδ k dk (15 T k sinδ k cosδ k q k In above relation, the torque angle δ 1 and δ 2 are associated with winding sets a b c and a b c, respectively, and defined as δ 1 δ δ 1 δ + +ξ (16 (17 δ is the initial value of load angle, whereas is the phase difference between voltage fed to phase a and a. Hence, torque attributed by each stator winding sets a b c and a b c is given by Equations (12 and (13 may be readily written in M T axes, τ e1 c(ψ M1 I T1 ψ T1 I M1 (18 Page 3 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 Figure 1. Phasor diagram of vector-controlled six-phase synchronous motor. T 1 V a T 2, V a V a e j q s M 1 I M1 I s1 I s2 IT1 Ø I M2 I T2 r I m1 I T1 1 I m2 2 1 2 IT2, I fr s1 a s2 fr a, M 2 d s τ e2 c(ψ M2 I T2 ψ T2 I M2 (19 where, the flux linkage ψ Mk and ψ Tk, and stator current I Mk and I Tk are aligned along M k T k axes respectively, for winding sets a b c (for k 1 and a b c (for k 2. Since, the resultant armature air gap flux is only aligned along flux axis (i.e. M k axis. Therefore, ψ T1 and ψ M1 ψ s1, where ψ s1 ψ 2 M1 + ψ 2 T1 (2 ψ T2 and ψ M2 ψ s2, where ψ s2 ψ 2 M2 + ψ 2 T2 (21 Hence, motor torque equation may be simplified as τ e τ e1 + τ e2 c(ψ s1 I T1 + ψ s2 I T2 (22 The developed motor torque is dependent on flux linkage ψ s1 (and ψ s2 and current I T1 (and I T2 which are orthogonal. This is the introduction of vector-controlled six-phase synchronous motor. The motor operation during steady state has been shown in the developed phasor diagram in Figure 1. 4. Implementation of vector control scheme The implementation of developed vector-controlled synchronous motor drive system has been shown in Figure 2. In this paper, motor operation has been investigated in constant torque region up to base speed, but same may be extended in field weakening region above base speed. In the figure, the outer speed loop is used to generate the reference value torque component of stator current I Tk through a speed controller (PI controller, whereas the reference value magnetizing current I mk is generated by the flux controller (PI controller associated with each winding sets a b c (for k 1 and a b c (for k 2. The reference magnetizing current is used to establish the required flux ψ sk in air gap, which related to field current by the relation, } I m1 I cos δ fr 1 (23 I m2 I cos δ fr 2 In phasor diagram, current component I T1 (and I T2 is in the direction of T 1 (and T 2 axis along which the voltage vector is also aligned. Further, the magnetizing component of current I m1 (and I m2 is Page 4 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 Figure 2. Schematic diagram of vector-controlled six-phase synchronous motor drive. aligned along M 1 (and M 2 axis which is used to establish the flux vector ψ s1 (and ψ s2. At steady state, both the stator flux and armature flux vectors are orthogonal to each other, i.e. ψ s1 (and ψ s2 is perpendicular to ψ a1 (and ψ a2 as shown in phasor diagram. Therefore, at steady state, both the vectors I Tk and I sk are equal i.e. I T1 I s1 for winding set a b c (and I T2 I s2 for winding set a b c and becomes in phase with voltage vector, signifying the motor operation at unity power factor. In control scheme, it may be noted that the magnetizing current component I m1 (and I m2 is related to field current I frk associated with winding sets a b c and a b c. Field current commands I fr1 and I fr2 are synthesized using Equation (23 in feedback loop. In field control loop, the field current error is fed to the field controller (PI controller to establish the required field excitation. It may be noted here that the magnitude of field current magnitude associated with each winding set a b c and a b c is assumed to be same I (.5I fr fr. Now, the flux component of stator current is generated by I M1 I cos δ m1 I fr 1 I M2 I cos δ m2 I fr 2 } (24 Above relation will yield a finite value of I M1 and I M2. But at steady state, it becomes zero (i.e. I M1 I M2 and Equation (23 will be satisfied. As soon as stator current component I Tk and I Mk are synthesized for winding sets a b c (k 1 and a b c (k 2, the reference value of current in stationary reference frame is generated. For this purpose, following two-step transformation is carried out. (1 Current component I Tk and I Mk are transformed to d q component in stationary reference frame, using angle α k in transformation in relation (15. (2 Above obtained stationary d q component of current is transformed into its equivalent threephase current (Krause et al., 24. The reference current generated in above steps in stationary reference frame are then compared with actual phase current of stator windings which results in current error. This current error is fed to the hysteresis current controller to regulate switching of inverter circuit feeding the motor. Page 5 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 5. Simulation results The developed system of vector-controlled six-phase synchronous motor drive was implemented in Matlab/Simulink environment. For this purpose, a 3.7-kW motor (parameters are given in Appendix 1 was operated in four quadrant. Initially, speed command was given at time t.1 s. in ramp way, following to which motor starts to run at synchronous speed after time t.65 s, showing its operation in first quadrant. A load of 5% of base torque was applied at time t 1.5 s which results a small dip in speed by.3 rad/s, but regains its original speed (i.e. synchronous speed after time t.5 s, as shown in Figure 3. In order to examine the motor operation in second quadrant, the direction of load torque was reversed at time t 3 s, resulting in a small increase in rotor speed by.5 rad/s. A small change in rotor speed due to sudden change in load torque signifies the disturbance rejection property of the drive system. A zoomed view of speed variation has been shown in Figure 3(a. Following to the change in load torque, not only the variation in q-component of stator current but also resulted a small variation in d-component of current, as shown in Figure 5. Change in stator current is also reflected in T-axis component of motor current flowing in winding sets a b c and a b c, in Figures 4 and 6. In order to shift the motor operation to third quadrant, a speed reversal command was initiated at time t 4 s in ramp way. The motor is then finally operates in reverse motoring mode after time t 5 s at synchronous speed. Further, at time t 6 s the load torque is reversed to operate the drive in fourth quadrant. It is important to note here that the switching of motor operation to different quadrant results in a large variation in d-component stator current whose effect is compensated by rotor field current, as shown in Figure 7(b. But the field circuit has a larger time constant, making the response slow (Das & Chattopadhyay, 1997; Jain & Ranganathan, 211; Krause et al., 24. This sluggish response of field circuit is substantially improved due to the magnetizing current injection along flux direction, as depicted by reference value of current in Figure 4(b and c as well as in actual current in Figure 6(c and d. Input phase voltage fed to winding sets a b c and a b c, is shown in Figure 8(a and (b, respectively. 6. Conclusion The scheme of vector control applicable for asymmetrical six-phase synchronous motor has been developed and extensively investigated in four quadrant operation. In this control technique, stator current is maintained for motor operation at unity power factor, which minimizes the stator current Figure 3. Motor response (a rotor speed ω r and (b torque T e. (a (b Page 6 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 Figure 4. Reference current in M T coordinate (a I T1, (b I M1 and (c I M2. (a (b (c Figure 5. Stator current in d q coordinate (a i q1 (b i d1 (c i q2 (d i d2. (a (b (c (d Figure 6. Actual current in M T coordinate (a I T1, (b I T2 (c I M1 and (d I M2. (a (b (c (d Page 7 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 Figure 7. Voltage current in field circuit (a reference I fr, (b actual I fr (c voltage E fr. (a (b (c Figure 8. Inverter output voltage (a phase a (b phase a'. (a (b and hence less losses. The dynamic behavior of six-phase synchronous motor in different quadrant operation was found to be substantially improved because of the decoupled/independent control of flux as well as torque component of current along M T axis, respectively. Furthermore, sluggish response of the rotor field circuit was also noted to be improved because of the magnetizing current injection from armature side. The present work may be further extended and investigated under different practical application with their experimental validation. Funding The authors received no direct funding for this research. Author details Arif Iqbal 1 E-mail: arif.iqbal.in@gmail.com, arif548@gmail.com ORCID ID: http://orcid.org/-2-7113-67 G.K. Singh 1 E-mail: gksngfee@gmail.com Vinay Pant 1 E-mail: vpantfee@gmail.com 1 Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Page 8 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 Citation information Cite this article as: Vector control of asymmetrical six-phase synchronous motor, Arif Iqbal, G.K. Singh & Vinay Pant, Cogent Engineering (216, 3: 11344. References Aghamohammadi, M. R., & Pourgholi, M. (28. Experience with SSSFR test for synchronous generator model identification using Hook Jeeves optimization method. International Journal of System Applications, Engineering and Development, 2, 122 127. Alger, P. L. (197. Induction machine. New York, NY: Gorden and Breach. Bojoi, R., Lazzari, M., Profumo, F., & Tenconi, A. (23. Digital field-oriented control for dual three-phase induction motor drives. IEEE Transactions on Industry Applications, 39, 752 76. http://dx.doi.org/1.119/tia.23.81179 Bose, B. K. (22. Mordern power electronics and AC drives. Upper Saddle River, NJ: Prentice Hall. Das, S. P., & Chattopadhyay, A. K. (1997. Observer based stator flux oriented vector control of cycloconverter-fed synchronous motor drive. IEEE Transactions on Industry Applications, 33, 943 955. http://dx.doi.org/1.119/28.65736 Iqbal, A., Singh, G. K., & Pant, V. (214. Steady-state modeling and analysis of six-phase synchronous motor. System Science & Control Engineering, 2, 236 249. Iqbal, A., Singh, G. K., & Pant, V. (in press. Stability analysis of asymmetrical six-phase synchronous motor. Turkish Journal of Electrical Engineering & Computer Sciences. Jain, A. K., & Ranganathan, V. T. (211. Modeling and field oriented control of salient pole wound field synchronous machine in stator flux coordinates. IEEE Transactions on Industrial Electronics, 58, 96 97. http://dx.doi.org/1.119/tie.21.248295 Jones, C. V. (1967. The unified theory of electric machine. London: Butterworths. Krause, P. C., Wasynczuk, O., & Sudhoff, S. D. (24. Analysis of electrical machinery and drive Systems. Piscataway, NJ: IEEE Press and Wiley. Levi, E. (28. Multiphase electric machines for variable-speed applications. IEEE Transactions on Industrial Applications, 38, 1893 199. Schiferl, R. F., & Ong, C. M. (1983. Six phase synchronous machine with AC and DC stator connections, part I: Equivalent circuit representation and steady-state analysis. IEEE Transactions on Power Apparatus and Systems, 12, 2685 2693. http://dx.doi.org/1.119/tpas.1983.317674 Singh, G. K. (22. Multi-phase induction machine drive research A survey. Electric Power Systems Research, 61, 139 147. http://dx.doi.org/1.116/s378-7796(27-x Singh, G. K. (211. Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation. Energy, 36, 5621 5631. http://dx.doi.org/1.116/j.energy.211.7.5 Singh, G. K., Nam, K., & Lim, S. K. (25. A simple indirect field-oriented control scheme for multiphase induction machine. IEEE Transactions on Industrial Electronics, 52, 1177 1184. http://dx.doi.org/1.119/tie.25.851593 Appendix 1 Motor parameter of 3.7 kw, 6 poles, 36 slots are r 1.21 Ω x mq 3.9112 Ω r fr.56 Ω r 2.21 Ω x md 6.1732 Ω x ldq r Kq 2.535 Ω x lkq.6697 Ω x lm.1652 Ω r Kd 14. Ω x lkd 1.55 Ω x lfr.242 Ω x l1 x l2.1758 Ω x ( xl1 + x lm + x md ( xlm + x md x ldq ( x lm + x mq ( xlm + x md x ldq x md x md ( ( xl1 + x lm + x md x ldq x lm + x mq x mq ( x ldq xl2 + x lm + x md x md x md (x l2 + x lm + x mq x mq x md x md x md x mq x mq x md x md x md ( xlkd + x md (x lkq + x mq (x lfr + x md Page 9 of 1

Iqbal et al., Cogent Engineering (216, 3: 11344 216 The Author(s. This open access article is distributed under a Creative Commons Attribution (CC-BY 4. license. You are free to: Share copy and redistribute the material in any medium or format Adapt remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Cogent Engineering (ISSN: 2331-1916 is published by Cogent OA, part of Taylor & Francis Group. Publishing with Cogent OA ensures: Immediate, universal access to your article on publication High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online Download and citation statistics for your article Rapid online publication Input from, and dialog with, expert editors and editorial boards Retention of full copyright of your article Guaranteed legacy preservation of your article Discounts and waivers for authors in developing regions Submit your manuscript to a Cogent OA journal at www.cogentoa.com Page 1 of 1