Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Similar documents
CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES. Clivia M Sotomayor Torres

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals

Elastic properties of graphene

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate

3D Elasticity Theory

Mechanics PhD Preliminary Spring 2017

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

6.730 Physics for Solid State Applications

CONFINED ACOUSTIC PHONONS IN SILICON

Phonons I - Crystal Vibrations (Kittel Ch. 4)

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

Vibrational modes of silicon metalattices from atomistic and finite-element calculations

Olivier Bourgeois Institut Néel

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY

Solutions for Homework 4

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid)

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Size-dependent model for thin film and nanowire thermal conductivity

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Phononic Crystals: Towards the Full Control of Elastic Waves propagation OUTLINE

FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Lecture 11 - Phonons II - Thermal Prop. Continued

Introduction to Seismology Spring 2008

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

Title. Author(s)Tamura, S.; Sangu, A.; Maris, H. J. CitationPHYSICAL REVIEW B, 68: Issue Date Doc URL. Rights. Type.

Supporting Information

GeSi Quantum Dot Superlattices

Fundamentals of Linear Elasticity

Atomistic Green s Function Method: Density of States and Multi-dimensionality

Introduction to Condensed Matter Physics

Left-handed materials: Transfer matrix method studies

Numerical Simulation of

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Thermal Conductivity in Superlattices

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities

LECTURE 5 - Wave Equation Hrvoje Tkalčić " 2 # & 2 #

Mott metal-insulator transition on compressible lattices

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Sum rules and universality in electron-modulated acoustic phonon interaction in a free-standing semiconductor plate

Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries

Lecture #2 Nanoultrasonic imaging

Understanding Phonon Dynamics via 1D Atomic Chains

An Introduction to Lattice Vibrations

Coherent control and TLS-mediated damping of SiN nanoresonators. Eva Weig

Chapter 5 Phonons II Thermal Properties

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Chapter 2 Fundamental Properties of Phononic Crystal

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

Concepts in Surface Physics

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Microfluidic crystals: Impossible order

Classical Theory of Harmonic Crystals

Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

Nanoscale interfacial heat transfer: insights from molecular dynamics

Colloidal Nanocrystal Superlattices as Phononic Crystals: Plane Wave Expansion Modeling of Phonon Band Structure

Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Structure and Dynamics : An Atomic View of Materials

Linearized Theory: Sound Waves

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

Supplementary Figures

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

Lecture #8 Non-linear phononics

Theoretical study of subwavelength imaging by. acoustic metamaterial slabs

Macroscopic theory Rock as 'elastic continuum'

Lecture 11: Periodic systems and Phonons

Solid State Physics 1. Vincent Casey

A METHOD FOR CALCULATING SURFACE STRESS AND ELASTIC CONSTANTS BY MOLECULAR DYNAMICS

WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

Crystal Relaxation, Elasticity, and Lattice Dynamics

PHYSICAL REVIEW B 71,

Colloque National sur les Techniques de Modélisation et de Simulation en Science des Matériaux, Sidi Bel-Abbès Novembre 2009

Phononic Crystals. J.H. Page

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI

2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys

Phonons II. Thermal Properties

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons

Microscopic-Macroscopic connection. Silvana Botti

Damping of magnetization dynamics

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Acoustic metamaterials in nanoscale

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm).

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Constitutive Relations

Computational models of diamond anvil cell compression

Surface Acoustic Waves on Piezoelectric Media Applications to Acoustic Charge Transport

Constitutive Equations

Transcription:

Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport in nm scale Native oxide 30 nm M. Asheghi APL, 7(997), 798

Motivation Modification of dispersion relation (phonon engineering) Modification of group velocity Modification of relaxation rate Thermal conductivity Improve ZT 3

Outline Theory: Elastic continuum model Equation of motion Dispersion relation Relaxation rate & Thermal conductivity: Scattering mechanisms: mklapp & Normal Relaxation rate for -processes Thermal conductivity Numerical results: discussion Conclusions 4

Elastic continuum theory Theory Stress-strain relationship Macroscopic model i.e. continuum-based and isotropic Well-suited for nanoscale confinement studies Stress tensor / t T C ij Motion equation : S T Elastics Tensor ijkl S kl Strain tensor + ( S L S T ) T λs δ + µ S ij ( ) Vector amplitude of displacement ρ Density λ, µ Lamé constants S T, S L Transversal and longitudinal sound speed Isotropic media kk ij S ( λ + µ ) S T L µ ρ ij ρ 5

Wavevector q l, t q // l, t K l, t Single Layer Solutions / t S ( S // T + L l, t ω S K S q + q S T ) L, T l, t L, T // l, t ( ) z y T iz zsurface 0 i x, y, z Solutions y x z x z ( z) ( z) ( z) ( z) Asin( q ( z) - Aq iaq cos( q sin( q iaq sin( q Aq l l z cos( q z) or l z) + z) + z) + l l l z) B cos( q ibq z) cos( q Bqsin( q ibq t t z sin( q Bq cos( q t t z) t t z) Flexural Waves z) Shear Waves z) Dilatational Waves J.L. Rose, ltrasonic waves in solid media, Cambridge niversity press, K, 004 Coupled solutions Coupled solutions 6

Three layer Solutions,3 x,3 z x z (z) (z) (z ) (z) T iz DW DW DW DW x z z surface x z + + or or FW FW FW FW x z 3 x x 0 B. C + C. C + T iz i z interface z interface,, ω S T, L q t, l + q // T iz i i x, y, z z interface z interface equations System symmetry 6 linear equations, i.e., 6x6 matrix. DW x(z) : Dilatational Waves solutions en x (z) components. FW x(z) : Flexural Waves solutions en x (z) components. B. C. : Boundary Conditions. C. C. : Continuity Conditions. L. Donetti, F. Gámiz, J. B. Róldan and A. Godoy, J Appl. Phys. 00 (006), 0370 7

Dispersion Relation & Group velocity Confinement More modes, hybridization of sagittal waves! Group velocity ( (v g ) dependant on q // // S L 8.440 kms -, S T 5.845 kms -, a0 nm DW: Dilatational Waves FW: Flexural Waves SW: Shear Waves 8

Experimental Results & Theory Flexural Waves 30 nm 0 nm Good match between theoretical model and experiments with Dispersion of Confined Acoustic Phonons in ltra-thin Silicon Membranes, J. Cuffe et al., in preparation 9

_3_layers Si v/s SiO Si-SiO SiO Oxide effect: decrease of frequency for large q // & high order modes // a8.5 nm b.6 nm a9.4 nm 0

Experimental Results & Theory 30 nm Si membrane Brillouin Scattering Spectroscopy ASOPS technique -L Prediction: 43.5 GHz 3-L Prediction: 33.8 GHz With:

Other systems

Outline Theory: Elastic continuum model Equation of motion Dispersion relation Relaxation Rate & Thermal Conductivity: Scattering mechanisms: mklapp & Normal Relaxation rate for -processes Thermal Conductivity Numerical results: discussion Conclusions 3

Scattering Mechanisms A: Lattice vacancy B: Point defect C: Crystal boundary D: mklapp E: Normal st Brillouin Zone τ eff κ Matthiessen's rule & Thermal Conductivity j 3 τ q, s j v q, s τ τ eff + τ C V b + τ i +... q q q q q q -process π/a π/a π/a π/a N-process -process Lattice Vector Consequence of anharmonicity Phonon-phonon interaction Finite phonon lifetime Possibilities:. Annihilation of two phonons and creation of a third phonon.. Annihilation of one phonon and creation of two phonons 4

Selection Rules: & N-Process ω q q G G q q R Q ω T L q q q V q ω P ω π/a r r r r -process q + q' G + q' ' P : Q : T T + T + T T R : T + L L If T is degenerate L If T is degenerate 0 0 ω + ω ω S π/a r q + : T + T r r q' q'' N-process L If T is degenerate V : T + L L 5

Relaxation Rate & Thermal conductivity τ ; q, s πγ h N Ωv ω ρ 0 q, s q' s', q'' s'', G ω q', s' ω q'', s'' ( n q' s' n q'' s'' ) δ ( ω qs + ω q' s' ω q'' s'' ) δ q+ q', q'' + G v s Phonon average group velocity q v qs n qs q n qs κ 3 Kinetic theory q, s v τ q C, s eff V κ hρv v ( + ) ( qsωqs nqs nqs nq ' s' 3πγ kbt qs q' s'; q'' s''; G n q'' s'' ) ω qs ω q' s' ω q'' s'' δ( ω) δ q+ q' q'', G More Branches More interactions Decrease thermal conductivity. Change of group velocity (v qs ) Change in thermal conductivity A. AlShaikhi and G.P. Srivastava, Phys. Rev. B, 76 (007), pp. 9505-. B. G. P. Srivastava, The Physics of Phonons, Taylor & Francis Group, NY, 990. 6

Outline Theory: Elastic continuum model Equation of motion Dispersion relation Relaxation Rate & Thermal Conductivity: Scattering mechanisms: mklapp & Normal Relaxation rate for -processes Thermal Conductivity Numerical results: discussion Conclusions 7

Results: Relaxation Rates The modification of dispersion and group velocity lead to increase of relaxation rate compared with the bulk (left). The decrease in frequency of 3-layer membrane lead to decrease on relaxation rate compared with -layer membrane (right). 8

Results: Thermal Conductivity Intrinsic thermal conductivity The numerical calculations predict a strong decrease of the thermal conductivity of a -layer membranes. 9

Summary Spatial confinement Modification of dispersion relation Modification of group velocity ω 0 rad/sec 6 4 0 0 3 DW FW SW aq // Group velocity Km/sec 8 6 4 0 0 0 40 60 80 00 aq // Increase of relaxation rate Decrease of thermal conductivity κ membrane / κ bulk 0,8 0,6 0,4 5 nm 4 nm 0, 3 nm 0,0 300 400 500 600 700 800 Temperature K 0

Conclusions Hybridization of sagittal waves. Group velocity dependence on q // : v g (q // ). Oxide effect: decrease of frequency for large q // Decrease in relaxation rate. The change in dispersion relation and the emergence of more branches implies an increase of phonon-phonon interactions. This causes an increase in relaxation rates and a corresponding decrease in the thermal conductivity.

Flat Branches Future Work Phononic structures PWE solutions With: Band Gap Theoretical D dispersion relation for carbon cylinder in an epoxy matrix (sagittal waves) Y. Pennec et al, surface science reports 65(00), pp 9-9